12 resultados para Right of way (Traffic regulations)
em Boston University Digital Common
Resumo:
Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.
Resumo:
Internet measurements show that the size distribution of Web-based transactions is usually very skewed; a few large requests constitute most of the total traffic. Motivated by the advantages of scheduling algorithms which favor short jobs, we propose to perform differentiated control over Web-based transactions to give preferential service to short web requests. The control is realized through service semantics provided by Internet Traffic Managers, a Diffserv-like architecture. To evaluate the performance of such a control system, it is necessary to have a fast but accurate analytical method. To this end, we model the Internet as a time-shared system and propose a numerical approach which utilizes Kleinrock's conservation law to solve the model. The numerical results are shown to match well those obtained by packet-level simulation, which runs orders of magnitude slower than our numerical method.
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.
Resumo:
A common assumption made in traffic matrix (TM) modeling and estimation is independence of a packet's network ingress and egress. We argue that in real IP networks, this assumption should not and does not hold. The fact that most traffic consists of two-way exchanges of packets means that traffic streams flowing in opposite directions at any point in the network are not independent. In this paper we propose a model for traffic matrices based on independence of connections rather than packets. We argue that the independent connection (IC) model is more intuitive, and has a more direct connection to underlying network phenomena than the gravity model. To validate the IC model, we show that it fits real data better than the gravity model and that it works well as a prior in the TM estimation problem. We study the model's parameters empirically and identify useful stability properties. This justifies the use of the simpler versions of the model for TM applications. To illustrate the utility of the model we focus on two such applications: synthetic TM generation and TM estimation. To the best of our knowledge this is the first traffic matrix model that incorporates properties of bidirectional traffic.
Resumo:
We present a thorough characterization of the access patterns in blogspace -- a fast-growing constituent of the content available through the Internet -- which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and administrative requests spanning a 28-day period is done from three different blogosphere perspectives. The server view characterizes the aggregate access patterns of all users to all blogs; the user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed. Our findings support two important conclusions. First, we show that the nature of interactions between users and objects is fundamentally different in blogspace than that observed in traditional web content. Access to objects in blogspace could be conceived as part of an interaction between an author and its readership. As we show in our work, such interactions range from one-to-many "broadcast-type" and many-to-one "registration-type" communication between an author and its readers, to multi-way, iterative "parlor-type" dialogues among members of an interest group. This more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed in traditional web content. Second, we identify and characterize novel features of the blogosphere workload, and we investigate the similarities and differences between typical web server workloads and blogosphere server workloads. Given the increasing share of blogspace traffic, understanding such differences is important for capacity planning and traffic engineering purposes, for example.
Resumo:
In a recent paper, Structural Analysis of Network Traffic Flows, we analyzed the set of Origin Destination traffic flows from the Sprint-Europe and Abilene backbone networks. This report presents the complete set of results from analyzing data from both networks. The results in this report are specific to the Sprint-1 and Abilene datasets studied in the above paper. The following results are presented here: 1 Rows of Principal Matrix (V) 2 1.1 Sprint-1 Dataset ................................ 2 1.2 Abilene Dataset.................................. 9 2 Set of Eigenflows 14 2.1 Sprint-1 Dataset.................................. 14 2.2 Abilene Dataset................................... 21 3 Classifying Eigenflows 26 3.1 Sprint-1 Dataset.................................. 26 3.2 Abilene Datase.................................... 44
Resumo:
Anomalies are unusual and significant changes in a network's traffic levels, which can often involve multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data. In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively using Principal Component Analysis. Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow. We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.
Resumo:
The explosion of WWW traffic necessitates an accurate picture of WWW use, and in particular requires a good understanding of client requests for WWW documents. To address this need, we have collected traces of actual executions of NCSA Mosaic, reflecting over half a million user requests for WWW documents. In this paper we describe the methods we used to collect our traces, and the formats of the collected data. Next, we present a descriptive statistical summary of the traces we collected, which identifies a number of trends and reference patterns in WWW use. In particular, we show that many characteristics of WWW use can be modelled using power-law distributions, including the distribution of document sizes, the popularity of documents as a function of size, the distribution of user requests for documents, and the number of references to documents as a function of their overall rank in popularity (Zipf's law). Finally, we show how the power-law distributions derived from our traces can be used to guide system designers interested in caching WWW documents.
Resumo:
The exploding demand for services like the World Wide Web reflects the potential that is presented by globally distributed information systems. The number of WWW servers world-wide has doubled every 3 to 5 months since 1993, outstripping even the growth of the Internet. At each of these self-managed sites, the Common Gateway Interface (CGI) and Hypertext Transfer Protocol (HTTP) already constitute a rudimentary basis for contributing local resources to remote collaborations. However, the Web has serious deficiencies that make it unsuited for use as a true medium for metacomputing --- the process of bringing hardware, software, and expertise from many geographically dispersed sources to bear on large scale problems. These deficiencies are, paradoxically, the direct result of the very simple design principles that enabled its exponential growth. There are many symptoms of the problems exhibited by the Web: disk and network resources are consumed extravagantly; information search and discovery are difficult; protocols are aimed at data movement rather than task migration, and ignore the potential for distributing computation. However, all of these can be seen as aspects of a single problem: as a distributed system for metacomputing, the Web offers unpredictable performance and unreliable results. The goal of our project is to use the Web as a medium (within either the global Internet or an enterprise intranet) for metacomputing in a reliable way with performance guarantees. We attack this problem one four levels: (1) Resource Management Services: Globally distributed computing allows novel approaches to the old problems of performance guarantees and reliability. Our first set of ideas involve setting up a family of real-time resource management models organized by the Web Computing Framework with a standard Resource Management Interface (RMI), a Resource Registry, a Task Registry, and resource management protocols to allow resource needs and availability information be collected and disseminated so that a family of algorithms with varying computational precision and accuracy of representations can be chosen to meet realtime and reliability constraints. (2) Middleware Services: Complementary to techniques for allocating and scheduling available resources to serve application needs under realtime and reliability constraints, the second set of ideas aim at reduce communication latency, traffic congestion, server work load, etc. We develop customizable middleware services to exploit application characteristics in traffic analysis to drive new server/browser design strategies (e.g., exploit self-similarity of Web traffic), derive document access patterns via multiserver cooperation, and use them in speculative prefetching, document caching, and aggressive replication to reduce server load and bandwidth requirements. (3) Communication Infrastructure: Finally, to achieve any guarantee of quality of service or performance, one must get at the network layer that can provide the basic guarantees of bandwidth, latency, and reliability. Therefore, the third area is a set of new techniques in network service and protocol designs. (4) Object-Oriented Web Computing Framework A useful resource management system must deal with job priority, fault-tolerance, quality of service, complex resources such as ATM channels, probabilistic models, etc., and models must be tailored to represent the best tradeoff for a particular setting. This requires a family of models, organized within an object-oriented framework, because no one-size-fits-all approach is appropriate. This presents a software engineering challenge requiring integration of solutions at all levels: algorithms, models, protocols, and profiling and monitoring tools. The framework captures the abstract class interfaces of the collection of cooperating components, but allows the concretization of each component to be driven by the requirements of a specific approach and environment.
Resumo:
Recent measurements of local-area and wide-area traffic have shown that network traffic exhibits variability at a wide range of scales self-similarity. In this paper, we examine a mechanism that gives rise to self-similar network traffic and present some of its performance implications. The mechanism we study is the transfer of files or messages whose size is drawn from a heavy-tailed distribution. We examine its effects through detailed transport-level simulations of multiple TCP streams in an internetwork. First, we show that in a "realistic" client/server network environment i.e., one with bounded resources and coupling among traffic sources competing for resources the degree to which file sizes are heavy-tailed can directly determine the degree of traffic self-similarity at the link level. We show that this causal relationship is not significantly affected by changes in network resources (bottleneck bandwidth and buffer capacity), network topology, the influence of cross-traffic, or the distribution of interarrival times. Second, we show that properties of the transport layer play an important role in preserving and modulating this relationship. In particular, the reliable transmission and flow control mechanisms of TCP (Reno, Tahoe, or Vegas) serve to maintain the long-range dependency structure induced by heavy-tailed file size distributions. In contrast, if a non-flow-controlled and unreliable (UDP-based) transport protocol is used, the resulting traffic shows little self-similar characteristics: although still bursty at short time scales, it has little long-range dependence. If flow-controlled, unreliable transport is employed, the degree of traffic self-similarity is positively correlated with the degree of throttling at the source. Third, in exploring the relationship between file sizes, transport protocols, and self-similarity, we are also able to show some of the performance implications of self-similarity. We present data on the relationship between traffic self-similarity and network performance as captured by performance measures including packet loss rate, retransmission rate, and queueing delay. Increased self-similarity, as expected, results in degradation of performance. Queueing delay, in particular, exhibits a drastic increase with increasing self-similarity. Throughput-related measures such as packet loss and retransmission rate, however, increase only gradually with increasing traffic self-similarity as long as reliable, flow-controlled transport protocol is used.
Resumo:
We present a thorough characterization of the access patterns in blogspace, which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and management requests spanning a 28-day period is done at three different levels. The user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed; the server view characterizes the aggregate access patterns of all users to all blogs. The more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed for traditional web content. We identify and characterize novel features of the blogosphere workload, and we show the similarities and differences between typical web server workloads and blogosphere server workloads. Finally, based on our main characterization results, we build a new synthetic blogosphere workload generator called GBLOT, which aims at mimicking closely a stream of requests originating from a population of blog users. Given the increasing share of blogspace traffic, realistic workload models and tools are important for capacity planning and traffic engineering purposes.