4 resultados para Redundant control

em Boston University Digital Common


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A neural network is introduced which provides a solution of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space. To do this, the network self-organizes a mapping from motion directions in 3-D space to velocity commands in joint space. Computer simulations demonstrate that, without any additional learning, the network can generate accurate movement commands that compensate for variable tool lengths, clamping of joints, distortions of visual input by a prism, and unexpected limb perturbations. Blind reaches have also been simulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a new class of Concurrency Control Algorithms that is especially suited for real-time database applications. Our approach relies on the use of (potentially) redundant computations to ensure that serializable schedules are found and executed as early as possible, thus, increasing the chances of a timely commitment of transactions with strict timing constraints. Due to its nature, we term our concurrency control algorithms Speculative. The aforementioned description encompasses many algorithms that we call collectively Speculative Concurrency Control (SCC) algorithms. SCC algorithms combine the advantages of both Pessimistic and Optimistic Concurrency Control (PCC and OCC) algorithms, while avoiding their disadvantages. On the one hand, SCC resembles PCC in that conflicts are detected as early as possible, thus making alternative schedules available in a timely fashion in case they are needed. On the other hand, SCC resembles OCC in that it allows conflicting transactions to proceed concurrently, thus avoiding unnecessary delays that may jeopardize their timely commitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.