3 resultados para Real work
em Boston University Digital Common
Resumo:
The proliferation of mobile computers and wireless networks requires the design of future distributed real-time applications to recognize and deal with the significant asymmetry between downstream and upstream communication capacities, and the significant disparity between server and client storage capacities. Recent research work proposed the use of Broadcast Disks as a scalable mechanism to deal with this problem. In this paper, we propose a new broadcast disks protocol, based on our Adaptive Information Dispersal Algorithm (AIDA). Our protocol is different from previous broadcast disks protocols in that it improves communication timeliness, fault-tolerance, and security, while allowing for a finer control of multiplexing of prioritized data (broadcast frequencies). We start with a general introduction of broadcast disks. Next, we propose broadcast disk organizations that are suitable for real-time applications. Next, we present AIDA and show its fault-tolerance and security properties. We conclude the paper with the description and analysis of AIDA-based broadcast disks organizations that achieve both timeliness and fault-tolerance, while preserving downstream communication capacity.
Resumo:
There is an increased interest in using broadcast disks to support mobile access to real-time databases. However, previous work has only considered the design of real-time immutable broadcast disks, the contents of which do not change over time. This paper considers the design of programs for real-time mutable broadcast disks - broadcast disks whose contents are occasionally updated. Recent scheduling-theoretic results relating to pinwheel scheduling and pfair scheduling are used to design algorithms for the efficient generation of real-time mutable broadcast disk programs.
Resumo:
The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.