3 resultados para Rayleigh scattering

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ocean, natural and artificial processes generate clouds of bubbles which scatter and attenuate sound. Measurements have shown that at the individual bubble resonance frequency, sound propagation in this medium is highly attenuated and dispersive. Theory to explain this behavior exists in the literature, and is adequate away from resonance. However, due to excessive attenuation near resonance, little experimental data exists for comparison. An impedance tube was developed specifically for exploring this regime. Using the instrument, unique phase speed and attenuation measurements were made for void fractions ranging from 6.2 × 10^−5 to 2.7 × 10^−3 and bubble sizes centered around 0.62 mm in radius. Improved measurement speed, accuracy and precision is possible with the new instrument, and both instantaneous and time-averaged measurements were obtained. Behavior at resonance was observed to be sensitive to the bubble population statistics and agreed with existing theory, within the uncertainty of the bubble population parameters. Scattering from acoustically compact bubble clouds can be predicted from classical scattering theory by using an effective medium description of the bubbly fluid interior. Experimental verification was previously obtained up to the lowest resonance frequency. A novel bubble production technique has been employed to obtain unique scattering measurements with a bubbly-liquid-filled latex tube in a large indoor tank. The effective scattering model described these measurements up to three times the lowest resonance frequency of the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topic of this thesis is an acoustic scattering technique for detennining the compressibility and density of individual particles. The particles, which have diameters on the order of 10 µm, are modeled as fluid spheres. Ultrasonic tone bursts of 2 µsec duration and 30 MHz center frequency scatter from individual particles as they traverse the focal region of two confocally positioned transducers. One transducer acts as a receiver while the other both transmits and receives acoustic signals. The resulting scattered bursts are detected at 90° and at 180° (backscattered). Using either the long wavelength (Rayleigh) or the weak scatterer (Born) approximations, it is possible to detennine the compressibility and density of the particle provided we possess a priori knowledge of the particle size and the host properties. The detected scattered signals are digitized and stored in computer memory. With this information we can compute the mean compressibility and density averaged over a population of particles ( typically 1000 particles) or display histograms of scattered amplitude statistics. An experiment was run first run to assess the feasibility of using polystyrene polymer microspheres to calibrate the instrument. A second study was performed on the buffy coat harvested from whole human blood. Finally, chinese hamster ovary cells which were subject to hyperthermia treatment were studied in order to see if the instrument could detect heat induced membrane blebbing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilized micron-sized bubbles, known as contrast agents, are often injected into the body to enhance ultrasound imaging of blood flow. The ability to detect such bubbles in blood depends on the relative magnitude of the acoustic power backscattered from the microbubbles (‘signal’) to the power backscattered from the red blood cells (‘noise’). Erythrocytes are acoustically small (Rayleigh regime), weak scatterers, and therefore the backscatter coefficient (BSC) of blood increases as the fourth power of frequency throughout the diagnostic frequency range. Microbubbles, on the other hand, are either resonant or super-resonant in the range 5-30 MHz. Above resonance, their total scattering cross-section remains constant with increasing frequency. In the present thesis, a theoretical model of the BSC of a suspension of red blood cells is presented and compared to the BSC of Optison® contrast agent microbubbles. It is predicted that, as the frequency increases, the BSC of red blood cell suspensions eventually exceeds the BSC of the strong scattering microbubbles, leading to a dramatic reduction in signal-to-noise ratio (SNR). This decrease in SNR with increasing frequency was also confirmed experimentally by use of an active cavitation detector for different concentrations of Optison® microbubbles in erythrocyte suspensions of different hematocrits. The magnitude of the observed decrease in SNR correlated well with theoretical predictions in most cases, except for very dense suspensions of red blood cells, where it is hypothesized that the close proximity of erythrocytes inhibits the acoustic response of the microbubbles.