2 resultados para Random Integer Partition
em Boston University Digital Common
Resumo:
Implementations are presented of two common algorithms for integer factorization, Pollard’s “p – 1” method and the SQUFOF method. The algorithms are implemented in the F# language, a functional programming language developed by Microsoft and officially released for the first time in 2010. The algorithms are thoroughly tested on a set of large integers (up to 64 bits in size), running both on a physical machine and a Windows Azure machine instance. Analysis of the relative performance between the two environments indicates comparable performance when taking into account the difference in computing power. Further analysis reveals that the relative performance of the Azure implementation tends to improve as the magnitudes of the integers increase, indicating that such an approach may be suitable for larger, more complex factorization tasks. Finally, several questions are presented for future research, including the performance of F# and related languages for more efficient, parallelizable algorithms, and the relative cost and performance of factorization algorithms in various environments, including physical hardware and commercial cloud computing offerings from the various vendors in the industry.
Resumo:
Recent work in sensor databases has focused extensively on distributed query problems, notably distributed computation of aggregates. Existing methods for computing aggregates broadcast queries to all sensors and use in-network aggregation of responses to minimize messaging costs. In this work, we focus on uniform random sampling across nodes, which can serve both as an alternative building block for aggregation and as an integral component of many other useful randomized algorithms. Prior to our work, the best existing proposals for uniform random sampling of sensors involve contacting all nodes in the network. We propose a practical method which is only approximately uniform, but contacts a number of sensors proportional to the diameter of the network instead of its size. The approximation achieved is tunably close to exact uniform sampling, and only relies on well-known existing primitives, namely geographic routing, distributed computation of Voronoi regions and von Neumann's rejection method. Ultimately, our sampling algorithm has the same worst-case asymptotic cost as routing a point-to-point message, and thus it is asymptotically optimal among request/reply-based sampling methods. We provide experimental results demonstrating the effectiveness of our algorithm on both synthetic and real sensor topologies.