1 resultado para RESTORATION
em Boston University Digital Common
Filtro por publicador
- Aberdeen University (5)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (98)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (13)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (32)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (40)
- CentAUR: Central Archive University of Reading - UK (44)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (52)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (9)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Center for the Blue Economy - Middlebury Institute of International Studies at Monterey (1)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (27)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (3)
- Ecology and Society (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (17)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (30)
- Indian Institute of Science - Bangalore - Índia (58)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- National Center for Biotechnology Information - NCBI (8)
- Ohio University (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (29)
- Queensland University of Technology - ePrints Archive (111)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (56)
- Research Open Access Repository of the University of East London. (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (2)
- University of Michigan (169)
- University of Queensland eSpace - Australia (10)
Resumo:
We propose a novel image registration framework which uses classifiers trained from examples of aligned images to achieve registration. Our approach is designed to register images of medical data where the physical condition of the patient has changed significantly and image intensities are drastically different. We use two boosted classifiers for each degree of freedom of image transformation. These two classifiers can both identify when two images are correctly aligned and provide an efficient means of moving towards correct registration for misaligned images. The classifiers capture local alignment information using multi-pixel comparisons and can therefore achieve correct alignments where approaches like correlation and mutual-information which rely on only pixel-to-pixel comparisons fail. We test our approach using images from CT scans acquired in a study of acute respiratory distress syndrome. We show significant increase in registration accuracy in comparison to an approach using mutual information.