2 resultados para Psychotherapeutic Approaches and Meditative Practice
em Boston University Digital Common
Resumo:
An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maximum a posteriori estimation and reprojection of the multiple views into texture space. Next, the surface shape is adjusted to minimize residual error in texture space. The surface is deformed towards a photometrically-consistent solution via a series of 1D epipolar searches at randomly selected surface points. The texture space formulation has improved computational complexity over standard image-based error approaches, and allows computation of the reprojection error and uncertainty for any point on the surface. Moreover, shape adjustments can be constrained such that the recovered model's silhouette matches those of the input images. Experiments with real world imagery demonstrate the validity of the approach.
Resumo:
We revisit the problem of connection management for reliable transport. At one extreme, a pure soft-state (SS) approach (as in Delta-t [9]) safely removes the state of a connection at the sender and receiver once the state timers expire without the need for explicit removal messages. And new connections are established without an explicit handshaking phase. On the other hand, a hybrid hard-state/soft-state (HS+SS) approach (as in TCP) uses both explicit handshaking as well as timer-based management of the connection’s state. In this paper, we consider the worst-case scenario of reliable single-message communication, and develop a common analytical model that can be instantiated to capture either the SS approach or the HS+SS approach. We compare the two approaches in terms of goodput, message and state overhead. We also use simulations to compare against other approaches, and evaluate them in terms of correctness (with respect to data loss and duplication) and robustness to bad network conditions (high message loss rate and variable channel delays). Our results show that the SS approach is more robust, and has lower message overhead. On the other hand, SS requires more memory to keep connection states, which reduces goodput. Given memories are getting bigger and cheaper, SS presents the best choice over bandwidth-constrained, error-prone networks.