4 resultados para Propagation velocities

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ocean, natural and artificial processes generate clouds of bubbles which scatter and attenuate sound. Measurements have shown that at the individual bubble resonance frequency, sound propagation in this medium is highly attenuated and dispersive. Theory to explain this behavior exists in the literature, and is adequate away from resonance. However, due to excessive attenuation near resonance, little experimental data exists for comparison. An impedance tube was developed specifically for exploring this regime. Using the instrument, unique phase speed and attenuation measurements were made for void fractions ranging from 6.2 × 10^−5 to 2.7 × 10^−3 and bubble sizes centered around 0.62 mm in radius. Improved measurement speed, accuracy and precision is possible with the new instrument, and both instantaneous and time-averaged measurements were obtained. Behavior at resonance was observed to be sensitive to the bubble population statistics and agreed with existing theory, within the uncertainty of the bubble population parameters. Scattering from acoustically compact bubble clouds can be predicted from classical scattering theory by using an effective medium description of the bubbly fluid interior. Experimental verification was previously obtained up to the lowest resonance frequency. A novel bubble production technique has been employed to obtain unique scattering measurements with a bubbly-liquid-filled latex tube in a large indoor tank. The effective scattering model described these measurements up to three times the lowest resonance frequency of the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of calculations [1] that employ a new mixed quantum classical iterative density matrix propagation approach (ILDM , or so called Is‐Landmap) [2] to explore the survival of coherence in different photo synthetic models. Our model studies confirm the long lived quantum coherence , while conventional theoretical tools (such as Redfield equation) fail to describe these phenomenon [3,4]. Our ILDM method is a numerical exactly propagation scheme and can be served as a bench mark calculation tools[2]. Result get from ILDM and from other recent methods have been compared and show agreement with each other[4,5]. Long lived coherence plateau has been attribute to the shift of harmonic potential due to the system bath interaction, and the harvesting efficiency is a balance between the coherence and dissipation[1]. We use this approach to investigate the excitation energy transfer dynamics in various light harvesting complex include Fenna‐Matthews‐Olsen light harvesting complex[1] and Cryptophyte Phycocyanin 645 [6]. [1] P.Huo and D.F.Coker ,J. Chem. Phys. 133, 184108 (2010) . [2] E.R. Dunkel, S. Bonella, and D.F. Coker, J. Chem. Phys. 129, 114106 (2008). [3] A. Ishizaki and G.R. Fleming, J. Chem. Phys. 130, 234111 (2009). [4] A. Ishizaki and G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009). [5] G. Tao and W.H. Miller, J. Phys. Chem. Lett. 1, 891 (2010). [6] P.Huo and D.F.Coker in preparation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sonic boom propagation in a quiet) stratified) lossy atmosphere is the subject of this dissertation. Two questions are considered in detail: (1) Does waveform freezing occur? (2) Are sonic booms shocks in steady state? Both assumptions have been invoked in the past to predict sonic boom waveforms at the ground. A very general form of the Burgers equation is derived and used as the model for the problem. The derivation begins with the basic conservation equations. The effects of nonlinearity) attenuation and dispersion due to multiple relaxations) viscosity) and heat conduction) geometrical spreading) and stratification of the medium are included. When the absorption and dispersion terms are neglected) an analytical solution is available. The analytical solution is used to answer the first question. Geometrical spreading and stratification of the medium are found to slow down the nonlinear distortion of finite-amplitude waves. In certain cases the distortion reaches an absolute limit) a phenomenon called waveform freezing. Judging by the maturity of the distortion mechanism, sonic booms generated by aircraft at 18 km altitude are not frozen when they reach the ground. On the other hand, judging by the approach of the waveform to its asymptotic shape, N waves generated by aircraft at 18 km altitude are frozen when they reach the ground. To answer the second question we solve the full Burgers equation and for this purpose develop a new computer code, THOR. The code is based on an algorithm by Lee and Hamilton (J. Acoust. Soc. Am. 97, 906-917, 1995) and has the novel feature that all its calculations are done in the time domain, including absorption and dispersion. Results from the code compare very well with analytical solutions. In a NASA exercise to compare sonic boom computer programs, THOR gave results that agree well with those of other participants and ran faster. We show that sonic booms are not steady state waves because they travel through a varying medium, suffer spreading, and fail to approximate step shocks closely enough. Although developed to predict sonic boom propagation, THOR can solve other problems for which the extended Burgers equation is a good propagation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.