3 resultados para Project 2002-035-C : Linking Best-Value Procurement Assessment to Outcome Performance Indicators

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Science Foundation (SBE-0354378); Office of Naval Research (N00014-95-1-0657)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a procedure to infer a typing for an arbitrary λ-term M in an intersection-type system that translates into exactly the call-by-name (resp., call-by-value) evaluation of M. Our framework is the recently developed System E which augments intersection types with expansion variables. The inferred typing for M is obtained by setting up a unification problem involving both type variables and expansion variables, which we solve with a confluent rewrite system. The inference procedure is compositional in the sense that typings for different program components can be inferred in any order, and without knowledge of the definition of other program components. Using expansion variables lets us achieve a compositional inference procedure easily. Termination of the procedure is generally undecidable. The procedure terminates and returns a typing if the input M is normalizing according to call-by-name (resp., call-by-value). The inferred typing is exact in the sense that the exact call-by-name (resp., call-by-value) behaviour of M can be obtained by a (polynomial) transformation of the typing. The inferred typing is also principal in the sense that any other typing that translates the call-by-name (resp., call-by-value) evaluation of M can be obtained from the inferred typing for M using a substitution-based transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.