2 resultados para Processors
em Boston University Digital Common
Resumo:
Consider a network of processors (sites) in which each site x has a finite set N(x) of neighbors. There is a transition function f that for each site x computes the next state ξ(x) from the states in N(x). But these transitions (updates) are applied in arbitrary order, one or many at a time. If the state of site x at time t is η(x; t) then let us define the sequence ζ(x; 0); ζ(x; 1), ... by taking the sequence η(x; 0),η(x; 1), ... , and deleting each repetition, i.e. each element equal to the preceding one. The function f is said to have invariant histories if the sequence ζ(x; i), (while it lasts, in case it is finite) depends only on the initial configuration, not on the order of updates. This paper shows that though the invariant history property is typically undecidable, there is a useful simple sufficient condition, called commutativity: For any configuration, for any pair x; y of neighbors, if the updating would change both ξ(x) and ξ(y) then the result of updating first x and then y is the same as the result of doing this in the reverse order. This fact is derivable from known results on the confluence of term-rewriting systems but the self-contained proof given here may be justifiable.
Resumo:
CONFIGR (CONtour FIgure GRound) is a computational model based on principles of biological vision that completes sparse and noisy image figures. Within an integrated vision/recognition system, CONFIGR posits an initial recognition stage which identifies figure pixels from spatially local input information. The resulting, and typically incomplete, figure is fed back to the “early vision” stage for long-range completion via filling-in. The reconstructed image is then re-presented to the recognition system for global functions such as object recognition. In the CONFIGR algorithm, the smallest independent image unit is the visible pixel, whose size defines a computational spatial scale. Once pixel size is fixed, the entire algorithm is fully determined, with no additional parameter choices. Multi-scale simulations illustrate the vision/recognition system. Open-source CONFIGR code is available online, but all examples can be derived analytically, and the design principles applied at each step are transparent. The model balances filling-in as figure against complementary filling-in as ground, which blocks spurious figure completions. Lobe computations occur on a subpixel spatial scale. Originally designed to fill-in missing contours in an incomplete image such as a dashed line, the same CONFIGR system connects and segments sparse dots, and unifies occluded objects from pieces locally identified as figure in the initial recognition stage. The model self-scales its completion distances, filling-in across gaps of any length, where unimpeded, while limiting connections among dense image-figure pixel groups that already have intrinsic form. Long-range image completion promises to play an important role in adaptive processors that reconstruct images from highly compressed video and still camera images.