6 resultados para Probabilidade de default
em Boston University Digital Common
Resumo:
The default ARTMAP algorithm and its parameter values specified here define a ready-to-use general-purpose neural network system for supervised learning and recognition.
Resumo:
Default ARTMAP combines winner-take-all category node activation during training , distributed activation during testing, and a set of default parameter values that define a ready-to-use, general-purpose neural network system for supervised learning and recognition. Winner-take-all ARTMAP learning is designed so that each input would make a correct prediction if re-presented immediately after its training presentation, passing the "next-input test." Distributed activation has been shown to improve test set prediction on many examples, but an input that made a correct winner-take-all prediction during training could make a different prediction with distributed activation. Default ARTMAP 2 introduces a distributed next-input test during training. On a number of benchmarks, this additional feature of the default system increases accuracy without significantly decreasing code compression. This paper includes a self-contained default ARTMAP 2 algorithm for implementation.
Resumo:
The Internet has brought unparalleled opportunities for expanding availability of research by bringing down economic and physical barriers to sharing. The digitally networked environment promises to democratize access, carry knowledge beyond traditional research niches, accelerate discovery, encourage new and interdisciplinary approaches to ever more complex research challenges, and enable new computational research strategies. However, despite these opportunities for increasing access to knowledge, the prices of scholarly journals have risen sharply over the past two decades, often forcing libraries to cancel subscriptions. Today even the wealthiest institutions cannot afford to sustain all of the journals needed by their faculties and students. To take advantage of the opportunities created by the Internet and to further their mission of creating, preserving, and disseminating knowledge, many academic institutions are taking steps to capture the benefits of more open research sharing. Colleges and universities have built digital repositories to preserve and distribute faculty scholarly articles and other research outputs. Many individual authors have taken steps to retain the rights they need, under copyright law, to allow their work to be made freely available on the Internet and in their institutionâ s repository. And, faculties at some institutions have adopted resolutions endorsing more open access to scholarly articles. Most recently, on February 12, 2008, the Faculty of Arts and Sciences (FAS) at Harvard University took a landmark step. The faculty voted to adopt a policy requiring that faculty authors send an electronic copy of their scholarly articles to the universityâ s digital repository and that faculty authors automatically grant copyright permission to the university to archive and to distribute these articles unless a faculty member has waived the policy for a particular article. Essentially, the faculty voted to make open access to the results of their published journal articles the default policy for the Faculty of Arts and Sciences of Harvard University. As of March 2008, a proposal is also under consideration in the University of California system by which faculty authors would commit routinely to grant copyright permission to the university to make copies of the facultyâ s scholarly work openly accessible over the Internet. Inspired by the example set by the Harvard faculty, this White Paper is addressed to the faculty and administrators of academic institutions who support equitable access to scholarly research and knowledge, and who believe that the institution can play an important role as steward of the scholarly literature produced by its faculty. This paper discusses both the motivation and the process for establishing a binding institutional policy that automatically grants a copyright license from each faculty member to permit deposit of his or her peer-reviewed scholarly articles in institutional repositories, from which the works become available for others to read and cite.
Resumo:
Recent measurement based studies reveal that most of the Internet connections are short in terms of the amount of traffic they carry (mice), while a small fraction of the connections are carrying a large portion of the traffic (elephants). A careful study of the TCP protocol shows that without help from an Active Queue Management (AQM) policy, short connections tend to lose to long connections in their competition for bandwidth. This is because short connections do not gain detailed knowledge of the network state, and therefore they are doomed to be less competitive due to the conservative nature of the TCP congestion control algorithm. Inspired by the Differentiated Services (Diffserv) architecture, we propose to give preferential treatment to short connections inside the bottleneck queue, so that short connections experience less packet drop rate than long connections. This is done by employing the RIO (RED with In and Out) queue management policy which uses different drop functions for different classes of traffic. Our simulation results show that: (1) in a highly loaded network, preferential treatment is necessary to provide short TCP connections with better response time and fairness without hurting the performance of long TCP connections; (2) the proposed scheme still delivers packets in FIFO manner at each link, thus it maintains statistical multiplexing gain and does not misorder packets; (3) choosing a smaller default initial timeout value for TCP can help enhance the performance of short TCP flows, however not as effectively as our scheme and at the risk of congestion collapse; (4) in the worst case, our proposal works as well as a regular RED scheme, in terms of response time and goodput.
Resumo:
Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.
Resumo:
Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.