3 resultados para Principal-component analysis

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalies are unusual and significant changes in a network's traffic levels, which can often involve multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data. In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively using Principal Component Analysis. Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow. We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new deformable shape-based method for color region segmentation is described. The method includes two stages: over-segmentation using a traditional color region segmentation algorithm, followed by deformable model-based region merging via grouping and hypothesis selection. During the second stage, region merging and object identification are executed simultaneously. A statistical shape model is used to estimate the likelihood of region groupings and model hypotheses. The prior distribution on deformation parameters is precomputed using principal component analysis over a training set of region groupings. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with similarly colored adjacent objects. Furthermore, the recovered parametric shape model can be used directly in object recognition and comparison. Experiments in segmentation and image retrieval are reported.