4 resultados para Power of political domain

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A well-known paradigm for load balancing in distributed systems is the``power of two choices,''whereby an item is stored at the less loaded of two (or more) random alternative servers. We investigate the power of two choices in natural settings for distributed computing where items and servers reside in a geometric space and each item is associated with the server that is its nearest neighbor. This is in fact the backdrop for distributed hash tables such as Chord, where the geometric space is determined by clockwise distance on a one-dimensional ring. Theoretically, we consider the following load balancing problem. Suppose that servers are initially hashed uniformly at random to points in the space. Sequentially, each item then considers d candidate insertion points also chosen uniformly at random from the space,and selects the insertion point whose associated server has the least load. For the one-dimensional ring, and for Euclidean distance on the two-dimensional torus, we demonstrate that when n data items are hashed to n servers,the maximum load at any server is log log n / log d + O(1) with high probability. While our results match the well-known bounds in the standard setting in which each server is selected equiprobably, our applications do not have this feature, since the sizes of the nearest-neighbor regions around servers are non-uniform. Therefore, the novelty in our methods lies in developing appropriate tail bounds on the distribution of nearest-neighbor region sizes and in adapting previous arguments to this more general setting. In addition, we provide simulation results demonstrating the load balance that results as the system size scales into the millions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 ⊆ P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo [?] to show that, for any family

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent empirical studies have shown that Internet topologies exhibit power laws of the form for the following relationships: (P1) outdegree of node (domain or router) versus rank; (P2) number of nodes versus outdegree; (P3) number of node pairs y = x^α within a neighborhood versus neighborhood size (in hops); and (P4) eigenvalues of the adjacency matrix versus rank. However, causes for the appearance of such power laws have not been convincingly given. In this paper, we examine four factors in the formation of Internet topologies. These factors are (F1) preferential connectivity of a new node to existing nodes; (F2) incremental growth of the network; (F3) distribution of nodes in space; and (F4) locality of edge connections. In synthetically generated network topologies, we study the relevance of each factor in causing the aforementioned power laws as well as other properties, namely diameter, average path length and clustering coefficient. Different kinds of network topologies are generated: (T1) topologies generated using our parametrized generator, we call BRITE; (T2) random topologies generated using the well-known Waxman model; (T3) Transit-Stub topologies generated using GT-ITM tool; and (T4) regular grid topologies. We observe that some generated topologies may not obey power laws P1 and P2. Thus, the existence of these power laws can be used to validate the accuracy of a given tool in generating representative Internet topologies. Power laws P3 and P4 were observed in nearly all considered topologies, but different topologies showed different values of the power exponent α. Thus, while the presence of power laws P3 and P4 do not give strong evidence for the representativeness of a generated topology, the value of α in P3 and P4 can be used as a litmus test for the representativeness of a generated topology. We also find that factors F1 and F2 are the key contributors in our study which provide the resemblance of our generated topologies to that of the Internet.