9 resultados para Polynomial time hierarchy

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that determining whether a quantum computation has a non-zero probability of accepting is at least as hard as the polynomial time hierarchy. This hardness result also applies to determining in general whether a given quantum basis state appears with nonzero amplitude in a superposition, or whether a given quantum bit has positive expectation value at the end of a quantum computation. This result is achieved by showing that the complexity class NQP of Adleman, Demarrais, and Huang, a quantum analog of NP, is equal to the counting class coC=P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a randomized version of the subgraph-exclusion algorithm (called Ramsey) for CLIQUE by Boppana and Halldorsson is studied on very large graphs. We compare the performance of this algorithm with the performance of two common heuristic algorithms, the greedy heuristic and a version of simulated annealing. These algorithms are tested on graphs with up to 10,000 vertices on a workstation and graphs as large as 70,000 vertices on a Connection Machine. Our implementations establish the ability to run clique approximation algorithms on very large graphs. We test our implementations on a variety of different graphs. Our conclusions indicate that on randomly generated graphs minor changes to the distribution can cause dramatic changes in the performance of the heuristic algorithms. The Ramsey algorithm, while not as good as the others for the most common distributions, seems more robust and provides a more even overall performance. In general, and especially on deterministically generated graphs, a combination of simulated annealing with either the Ramsey algorithm or the greedy heuristic seems to perform best. This combined algorithm works particularly well on large Keller and Hamming graphs and has a competitive overall performance on the DIMACS benchmark graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isomorphisms holding in all models of the simply typed lambda calculus with surjective and terminal objects are well studied - these models are exactly the Cartesian closed categories. Isomorphism of two simple types in such a model is decidable by reduction to a normal form and comparison under a finite number of permutations (Bruce, Di Cosmo, and Longo 1992). Unfortunately, these normal forms may be exponentially larger than the original types so this construction decides isomorphism in exponential time. We show how using space-sharing/hash-consing techniques and memoization can be used to decide isomorphism in practical polynomial time (low degree, small hidden constant). Other researchers have investigated simple type isomorphism in relation to, among other potential applications, type-based retrieval of software modules from libraries and automatic generation of bridge code for multi-language systems. Our result makes such potential applications practically feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that determining whether a quantum computation has a non-zero probability of accepting is at least as hard as the polynomial time hierarchy. This hardness result also applies to determining in general whether a given quantum basis state appears with nonzero amplitude in a superposition, or whether a given quantum bit has positive expectation value at the end of a quantum computation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the problem of learning disjunctions of counting functions, which are general cases of parity and modulo functions, with equivalence and membership queries. We prove that, for any prime number p, the class of disjunctions of integer-weighted counting functions with modulus p over the domain Znq (or Zn) for any given integer q ≥ 2 is polynomial time learnable using at most n + 1 equivalence queries, where the hypotheses issued by the learner are disjunctions of at most n counting functions with weights from Zp. The result is obtained through learning linear systems over an arbitrary field. In general a counting function may have a composite modulus. We prove that, for any given integer q ≥ 2, over the domain Zn2, the class of read-once disjunctions of Boolean-weighted counting functions with modulus q is polynomial time learnable with only one equivalence query, and the class of disjunctions of log log n Boolean-weighted counting functions with modulus q is polynomial time learnable. Finally, we present an algorithm for learning graph-based counting functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 ⊆ P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo [?] to show that, for any family

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient storage of types within a compiler is necessary to avoid large blowups in space during compilation. Recursive types in particular are important to consider, as naive representations of recursive types may be arbitrarily larger than necessary through unfolding. Hash-consing has been used to efficiently store non-recursive types. Deterministic finite automata techniques have been used to efficiently perform various operations on recursive types. We present a new system for storing recursive types combining hash-consing and deterministic finite automata techniques. The space requirements are linear in the number of distinct types. Both update and lookup operations take polynomial time and linear space and type equality can be checked in constant time once both types are in the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a type inference algorithm, in the style of compositional analysis, for the language TRAFFIC—a specification language for flow composition applications proposed in [2]—and prove that this algorithm is correct: the typings it infers are principal typings, and the typings agree with syntax-directed type checking on closed flow specifications. This algorithm is capable of verifying partial flow specifications, which is a significant improvement over syntax-directed type checking algorithm presented in [3]. We also show that this algorithm runs efficiently, i.e., in low-degree polynomial time.