3 resultados para Polynomial powers of sigmoid

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a procedure to infer a typing for an arbitrary λ-term M in an intersection-type system that translates into exactly the call-by-name (resp., call-by-value) evaluation of M. Our framework is the recently developed System E which augments intersection types with expansion variables. The inferred typing for M is obtained by setting up a unification problem involving both type variables and expansion variables, which we solve with a confluent rewrite system. The inference procedure is compositional in the sense that typings for different program components can be inferred in any order, and without knowledge of the definition of other program components. Using expansion variables lets us achieve a compositional inference procedure easily. Termination of the procedure is generally undecidable. The procedure terminates and returns a typing if the input M is normalizing according to call-by-name (resp., call-by-value). The inferred typing is exact in the sense that the exact call-by-name (resp., call-by-value) behaviour of M can be obtained by a (polynomial) transformation of the typing. The inferred typing is also principal in the sense that any other typing that translates the call-by-name (resp., call-by-value) evaluation of M can be obtained from the inferred typing for M using a substitution-based transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of a randomized version of the subgraph-exclusion algorithm (called Ramsey) for CLIQUE by Boppana and Halldorsson is studied on very large graphs. We compare the performance of this algorithm with the performance of two common heuristic algorithms, the greedy heuristic and a version of simulated annealing. These algorithms are tested on graphs with up to 10,000 vertices on a workstation and graphs as large as 70,000 vertices on a Connection Machine. Our implementations establish the ability to run clique approximation algorithms on very large graphs. We test our implementations on a variety of different graphs. Our conclusions indicate that on randomly generated graphs minor changes to the distribution can cause dramatic changes in the performance of the heuristic algorithms. The Ramsey algorithm, while not as good as the others for the most common distributions, seems more robust and provides a more even overall performance. In general, and especially on deterministically generated graphs, a combination of simulated annealing with either the Ramsey algorithm or the greedy heuristic seems to perform best. This combined algorithm works particularly well on large Keller and Hamming graphs and has a competitive overall performance on the DIMACS benchmark graphs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The isomorphisms holding in all models of the simply typed lambda calculus with surjective and terminal objects are well studied - these models are exactly the Cartesian closed categories. Isomorphism of two simple types in such a model is decidable by reduction to a normal form and comparison under a finite number of permutations (Bruce, Di Cosmo, and Longo 1992). Unfortunately, these normal forms may be exponentially larger than the original types so this construction decides isomorphism in exponential time. We show how using space-sharing/hash-consing techniques and memoization can be used to decide isomorphism in practical polynomial time (low degree, small hidden constant). Other researchers have investigated simple type isomorphism in relation to, among other potential applications, type-based retrieval of software modules from libraries and automatic generation of bridge code for multi-language systems. Our result makes such potential applications practically feasible.