6 resultados para Phoneme representations

em Boston University Digital Common


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a model of speech production called DIVA that highlights issues of self-organization and motor equivalent production of phonological units. The model uses a circular reaction strategy to learn two mappings between three levels of representation. Data on the plasticity of phonemic perceptual boundaries motivates a learned mapping between phoneme representations and vocal tract variables. A second mapping between vocal tract variables and articulator movements is also learned. To achieve the flexible control made possible by the redundancy of this mapping, desired directions in vocal tract configuration space are mapped into articulator velocity commands. Because each vocal tract direction cell learns to activate several articulator velocities during babbling, the model provides a natural account of the formation of coordinative structures. Model simulations show automatic compensation for unexpected constraints despite no previous experience or learning under these constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under natural viewing conditions small movements of the eye, head, and body prevent the maintenance of a steady direction of gaze. It is known that stimuli tend to fade when they a restabilized on the retina for several seconds. However; it is unclear whether the physiological motion of the retinal image serves a visual purpose during the brief periods of natural visual fixation. This study examines the impact of fixational instability on the statistics of the visua1 input to the retina and on the structure of neural activity in the early visual system. We show that fixational instability introduces a component in the retinal input signals that in the presence of natural images, lacks spatial correlations. This component strongly influences neural activity in a model of the LGN. It decorrelates cell responses even if the contrast sensitivity functions of simulated cells arc not perfectly tuned to counterbalance the power-law spectrum of natural images. A decorrelation of neural activity at the early stages of the visual system has been proposed to be beneficial for discarding statistical redundancies in the input signals. The results of this study suggest that fixational instability might contribute to establishing efficient representations of natural stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual search data are given a unified quantitative explanation by a model of how spatial maps in the parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional resources as they reciprocally interact with visual representations in the prestriate cortex. The model visual representations arc organized into multiple boundary and surface representations. Visual search in the model is initiated by organizing multiple items that lie within a given boundary or surface representation into a candidate search grouping. These items arc compared with object recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches and recursive selection of new groupings until a target object io identified. This search model is algorithmically specified to quantitatively simulate search data using a single set of parameters, as well as to qualitatively explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Viri, and Garbart (1984), Cohen and Ivry (1991), Enno and Rensink (1990), He and Nakayarna (1992), Humphreys, Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the Feature Integration and Guided Search models, and grounds the analysis of visual search in neural models of preattentive vision, attentive object learning and categorization, and attentive spatial localization and orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is described of how the brain may autonomously learn a body-centered representation of 3-D target position by combining information about retinal target position, eye position, and head position in real time. Such a body-centered spatial representation enables accurate movement commands to the limbs to be generated despite changes in the spatial relationships between the eyes, head, body, and limbs through time. The model learns a vector representation--otherwise known as a parcellated distributed representation--of target vergence with respect to the two eyes, and of the horizontal and vertical spherical angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical representation has been reported in the caudal midbrain and medulla of the frog, as well as in psychophysical movement studies in humans. A head-centered vergence-spherical representation of foveated target position can be generated by two stages of opponent processing that combine corollary discharges of outflow movement signals to the two eyes. Sums and differences of opponent signals define angular and vergence coordinates, respectively. The head-centered representation interacts with a binocular visual representation of non-foveated target position to learn a visuomotor representation of both foveated and non-foveated target position that is capable of commanding yoked eye movementes. This head-centered vector representation also interacts with representations of neck movement commands to learn a body-centered estimate of target position that is capable of commanding coordinated arm movements. Learning occurs during head movements made while gaze remains fixed on a foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents the stored estimate from being reset during a gaze-maintaining head movement. As the head moves, new estimates arc compared with the stored estimate to compute difference vectors which act as error signals that drive the learning process, as well as control the on-line merging of multimodal information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.