6 resultados para Perkins, Nicholas, 1647-1712.

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sermon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproduction of copy held by Special Collections, Bridewell Library, Perkins School of Theology, Southern Methodist University. Includes both DjVu and PDF files for download. Mode of access: World Wide Web.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

University of California Libraries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This position paper outlines a new network architecture, i.e., a style of construction that identifies the objects and how they relate. We do not specify particular protocol implementations or specific interfaces and policies. After all, it should be possible to change protocols in an architecture without changing the architecture. Rather we outline the repeating patterns and structures, and how the proposed model would cope with the challenges faced by today's Internet (and that of the future). Our new architecture is based on the following principle: Application processes communicate via a distributed inter-process communication (IPC) facility. The application processes that make up this facility provide a protocol that implements an IPC mechanism, and a protocol for managing distributed IPC (routing, security and other management tasks). Existing implementation strategies, algorithms, and protocols can be cast and used within our proposed new structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.