1 resultado para Père Noël
em Boston University Digital Common
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (5)
- Aquatic Commons (15)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Boston University Digital Common (1)
- Brock University, Canada (9)
- CaltechTHESIS (3)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (38)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (16)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (5)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (208)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (37)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (56)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (10)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (177)
- Queensland University of Technology - ePrints Archive (219)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad Nacional Agraria (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (6)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (12)
- Universidad del Rosario, Colombia (12)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (13)
- Université de Montréal (1)
- Université de Montréal, Canada (28)
- University of Michigan (1)
- University of Southampton, United Kingdom (5)
- University of Washington (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
World-Wide Web (WWW) services have grown to levels where significant delays are expected to happen. Techniques like pre-fetching are likely to help users to personalize their needs, reducing their waiting times. However, pre-fetching is only effective if the right documents are identified and if user's move is correctly predicted. Otherwise, pre-fetching will only waste bandwidth. Therefore, it is productive to determine whether a revisit will occur or not, before starting pre-fetching. In this paper we develop two user models that help determining user's next move. One model uses Random Walk approximation and the other is based on Digital Signal Processing techniques. We also give hints on how to use such models with a simple pre-fetching technique that we are developing.