5 resultados para Overt Argument
em Boston University Digital Common
Resumo:
Many kinds of human states of consciousness have been distinguished, including colourful or anomalous experiences that are felt to have spiritual significance by most people who have them. The neurosciences have isolated brain-state correlates for some of these colourful states of consciousness, thereby strengthening the hypothesis that these experiences are mediated by the brain. This result both challenges metaphysically dualist accounts of human nature and suggests that any adequate causal explanation of colourful experiences would have to make detailed reference to the evolutionary and genetic conditions that give rise to brains capable of such conscious phenomena. This paper quickly surveys types of conscious states and neurological interpretations of them. In order to deal with the question of the significance of such experiences, the paper then attempts to identify evolutionary and genetic constraints on proposals for causal explanations of such experiences. The conclusion is that a properly sensitive evolutionary account of human consciousness supports a rebuttal of the argument that the cognitive content of colourful experiences is pure delusion, but that this evolutionary account also heavily constrains what might be inferred theologically from such experiences. They are not necessarily delusory, therefore, but they are often highly misleading. Their significance must be construed consistently with this conclusion.
Resumo:
The plurality of models of ultimate reality is a central problem for religious philosophy. This essay sketches what is involved in mounting comparative inquiries across the plurality of models. In order to illustrate what advance would look like in such a comparative inquiry, an argument is presented to show that highly anthropomorphic models of ultimate reality are inferior to a number of competitors. This paper was delivered as a keynote address during the APA Pacific 2007 Mini-Conference on Models of God.
Resumo:
Recent work has shown equivalences between various type systems and flow logics. Ideally, the translations upon which such equivalences are based should be faithful in the sense that information is not lost in round-trip translations from flows to types and back or from types to flows and back. Building on the work of Nielson & Nielson and of Palsberg & Pavlopoulou, we present the first faithful translations between a class of finitary polyvariant flow analyses and a type system supporting polymorphism in the form of intersection and union types. Additionally, our flow/type correspondence solves several open problems posed by Palsberg & Pavlopoulou: (1) it expresses call-string based polyvariance (such as k-CFA) as well as argument based polyvariance; (2) it enjoys a subject reduction property for flows as well as for types; and (3) it supports a flow-oriented perspective rather than a type-oriented one.
Resumo:
How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.
Resumo:
This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.