2 resultados para One-dimensional configurations
em Boston University Digital Common
Resumo:
We investigate numerically the ground state phase diagram of the one-dimensional extended Hubbard model, including an on--site interaction U and a nearest--neighbor interaction V. We focus on the ground state phases of the model in the V >> U region, where previous studies have suggested the possibility of dominant superconducting pairing fluctuations before the system phase separates at a critical value V=V_PS. Using quantum Monte Carlo methods on lattices much larger than in previous Lanczos diagonalization studies, we determine the boundary of phase separation, the Luttinger Liquid correlation exponent K_rho, and other correlation functions in this region. We find that phase separation occurs for V significantly smaller than previously reported. In addition, for negative U, we find that a uniform state re-enters from phase separation as the electron density is increased towards half filling. For V < V_PS, our results show that superconducting fluctuations are not dominant. The system behaves asymptotically as a Luttinger Liquid with K_rho < 1, but we also find strong low-energy (but gapped) charge-density fluctuations at a momentum not expected for a standard Luttinger Liquid.
Resumo:
One-and two-dimensional cellular automata which are known to be fault-tolerant are very complex. On the other hand, only very simple cellular automata have actually been proven to lack fault-tolerance, i.e., to be mixing. The latter either have large noise probability ε or belong to the small family of two-state nearest-neighbor monotonic rules which includes local majority voting. For a certain simple automaton L called the soldiers rule, this problem has intrigued researchers for the last two decades since L is clearly more robust than local voting: in the absence of noise, L eliminates any finite island of perturbation from an initial configuration of all 0's or all 1's. The same holds for a 4-state monotonic variant of L, K, called two-line voting. We will prove that the probabilistic cellular automata Kε and Lε asymptotically lose all information about their initial state when subject to small, strongly biased noise. The mixing property trivially implies that the systems are ergodic. The finite-time information-retaining quality of a mixing system can be represented by its relaxation time Relax(⋅), which measures the time before the onset of significant information loss. This is known to grow as (1/ε)^c for noisy local voting. The impressive error-correction ability of L has prompted some researchers to conjecture that Relax(Lε) = 2^(c/ε). We prove the tight bound 2^(c1log^21/ε) < Relax(Lε) < 2^(c2log^21/ε) for a biased error model. The same holds for Kε. Moreover, the lower bound is independent of the bias assumption. The strong bias assumption makes it possible to apply sparsity/renormalization techniques, the main tools of our investigation, used earlier in the opposite context of proving fault-tolerance.