4 resultados para On call
em Boston University Digital Common
Resumo:
http://books.google.com/books?vid=OCLC55772204
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.
Resumo:
Interdomain routing on the Internet is performed using route preference policies specified independently, and arbitrarily by each Autonomous System in the network. These policies are used in the border gateway protocol (BGP) by each AS when selecting next-hop choices for routes to each destination. Conflicts between policies used by different ASs can lead to routing instabilities that, potentially, cannot be resolved no matter how long BGP is run. The Stable Paths Problem (SPP) is an abstract graph theoretic model of the problem of selecting nexthop routes for a destination. A stable solution to the problem is a set of next-hop choices, one for each AS, that is compatible with the policies of each AS. In a stable solution each AS has selected its best next-hop given that the next-hop choices of all neighbors are fixed. BGP can be viewed as a distributed algorithm for solving SPP. In this report we consider the stable paths problem, as well as a family of restricted variants of the stable paths problem, which we call F stable paths problems. We show that two very simple variants of the stable paths problem are also NP-complete. In addition we show that for networks with a DAG topology, there is an efficient centralized algorithm to solve the stable paths problem, and that BGP always efficiently converges to a stable solution on such networks.
Resumo:
Recent empirical studies have shown that Internet topologies exhibit power laws of the form for the following relationships: (P1) outdegree of node (domain or router) versus rank; (P2) number of nodes versus outdegree; (P3) number of node pairs y = x^α within a neighborhood versus neighborhood size (in hops); and (P4) eigenvalues of the adjacency matrix versus rank. However, causes for the appearance of such power laws have not been convincingly given. In this paper, we examine four factors in the formation of Internet topologies. These factors are (F1) preferential connectivity of a new node to existing nodes; (F2) incremental growth of the network; (F3) distribution of nodes in space; and (F4) locality of edge connections. In synthetically generated network topologies, we study the relevance of each factor in causing the aforementioned power laws as well as other properties, namely diameter, average path length and clustering coefficient. Different kinds of network topologies are generated: (T1) topologies generated using our parametrized generator, we call BRITE; (T2) random topologies generated using the well-known Waxman model; (T3) Transit-Stub topologies generated using GT-ITM tool; and (T4) regular grid topologies. We observe that some generated topologies may not obey power laws P1 and P2. Thus, the existence of these power laws can be used to validate the accuracy of a given tool in generating representative Internet topologies. Power laws P3 and P4 were observed in nearly all considered topologies, but different topologies showed different values of the power exponent α. Thus, while the presence of power laws P3 and P4 do not give strong evidence for the representativeness of a generated topology, the value of α in P3 and P4 can be used as a litmus test for the representativeness of a generated topology. We also find that factors F1 and F2 are the key contributors in our study which provide the resemblance of our generated topologies to that of the Internet.