4 resultados para Observer based control
em Boston University Digital Common
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. In this paper, we define a new spectrum of window-based congestion control algorithms that are TCP-friendly as well as TCP-compatible under RED. Contrary to previous memory-less controls, our algorithms utilize history information in their control rules. Our proposed algorithms have two salient features: (1) They enable a wider region of TCP-friendliness, and thus more flexibility in trading off among smoothness, aggressiveness, and responsiveness; and (2) they ensure a faster convergence to fairness under a wide range of system conditions. We demonstrate analytically and through extensive ns simulations the steady-state and transient behaviors of several instances of this new spectrum of algorithms. In particular, SIMD is one instance in which the congestion window is increased super-linearly with time since the detection of the last loss. Compared to recently proposed TCP-friendly AIMD and binomial algorithms, we demonstrate the superiority of SIMD in: (1) adapting to sudden increases in available bandwidth, while maintaining competitive smoothness and responsiveness; and (2) rapidly converging to fairness and efficiency.
Resumo:
The increasing diversity of Internet application requirements has spurred recent interest in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The control rules are parameterized so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. This paper presents a comprehensive study of a new spectrum of window-based congestion controls, which are TCP-friendly as well as TCP-compatible under RED. Our controls utilize history information in their control rules. By doing so, they improve the transient behavior, compared to recently proposed slowly-responsive congestion controls such as general AIMD and binomial controls. Our controls can achieve better tradeoffs among smoothness, aggressiveness, and responsiveness, and they can achieve faster convergence. We demonstrate analytically and through extensive ns simulations the steady-state and transient behavior of several instances of this new spectrum.
Resumo:
A vision based technique for non-rigid control is presented that can be used for animation and video game applications. The user grasps a soft, squishable object in front of a camera that can be moved and deformed in order to specify motion. Active Blobs, a non-rigid tracking technique is used to recover the position, rotation and non-rigid deformations of the object. The resulting transformations can be applied to a texture mapped mesh, thus allowing the user to control it interactively. Our use of texture mapping hardware allows us to make the system responsive enough for interactive animation and video game character control.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.