9 resultados para Object detection
em Boston University Digital Common
Resumo:
Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. Detector training can be accomplished via standard SVM learning. The resulting detectors are tuned to specific variations in the foreground class. They also serve to evaluate hypotheses of the foreground state. When the foreground parameters are provided in training, the detectors can also produce parameter estimate. When the foreground object masks are provided in training, the detectors can also produce object segmentation. The advantages of our method over past methods are demonstrated on data sets of human hands and vehicles.
Resumo:
Hidden State Shape Models (HSSMs) [2], a variant of Hidden Markov Models (HMMs) [9], were proposed to detect shape classes of variable structure in cluttered images. In this paper, we formulate a probabilistic framework for HSSMs which provides two major improvements in comparison to the previous method [2]. First, while the method in [2] required the scale of the object to be passed as an input, the method proposed here estimates the scale of the object automatically. This is achieved by introducing a new term for the observation probability that is based on a object-clutter feature model. Second, a segmental HMM [6, 8] is applied to model the "duration probability" of each HMM state, which is learned from the shape statistics in a training set and helps obtain meaningful registration results. Using a segmental HMM provides a principled way to model dependencies between the scales of different parts of the object. In object localization experiments on a dataset of real hand images, the proposed method significantly outperforms the method of [2], reducing the incorrect localization rate from 40% to 15%. The improvement in accuracy becomes more significant if we consider that the method proposed here is scale-independent, whereas the method of [2] takes as input the scale of the object we want to localize.
Resumo:
Moving cameras are needed for a wide range of applications in robotics, vehicle systems, surveillance, etc. However, many foreground object segmentation methods reported in the literature are unsuitable for such settings; these methods assume that the camera is fixed and the background changes slowly, and are inadequate for segmenting objects in video if there is significant motion of the camera or background. To address this shortcoming, a new method for segmenting foreground objects is proposed that utilizes binocular video. The method is demonstrated in the application of tracking and segmenting people in video who are approximately facing the binocular camera rig. Given a stereo image pair, the system first tries to find faces. Starting at each face, the region containing the person is grown by merging regions from an over-segmented color image. The disparity map is used to guide this merging process. The system has been implemented on a consumer-grade PC, and tested on video sequences of people indoors obtained from a moving camera rig. As can be expected, the proposed method works well in situations where other foreground-background segmentation methods typically fail. We believe that this superior performance is partly due to the use of object detection to guide region merging in disparity/color foreground segmentation, and partly due to the use of disparity information available with a binocular rig, in contrast with most previous methods that assumed monocular sequences.
Resumo:
Based on our previous work in deformable shape model-based object detection, a new method is proposed that uses index trees for organizing shape features to support content-based retrieval applications. In the proposed strategy, different shape feature sets can be used in index trees constructed for object detection and shape similarity comparison respectively. There is a direct correspondence between the two shape feature sets. As a result, application-specific features can be obtained efficiently for shape-based retrieval after object detection. A novel approach is proposed that allows retrieval of images based on the population distribution of deformed shapes in each image. Experiments testing these new approaches have been conducted using an image database that contains blood cell micrographs. The precision vs. recall performance measure shows that our method is superior to previous methods.
Resumo:
Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.
Resumo:
Object detection and recognition are important problems in computer vision. The challenges of these problems come from the presence of noise, background clutter, large within class variations of the object class and limited training data. In addition, the computational complexity in the recognition process is also a concern in practice. In this thesis, we propose one approach to handle the problem of detecting an object class that exhibits large within-class variations, and a second approach to speed up the classification processes. In the first approach, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly solved with using a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. For applications where explicit parameterization of the within-class states is unavailable, a nonparametric formulation of the kernel can be constructed with a proper foreground distance/similarity measure. Detector training is accomplished via standard Support Vector Machine learning. The resulting detectors are tuned to specific variations in the foreground class. They also serve to evaluate hypotheses of the foreground state. When the image masks for foreground objects are provided in training, the detectors can also produce object segmentation. Methods for generating a representative sample set of detectors are proposed that can enable efficient detection and tracking. In addition, because individual detectors verify hypotheses of foreground state, they can also be incorporated in a tracking-by-detection frame work to recover foreground state in image sequences. To run the detectors efficiently at the online stage, an input-sensitive speedup strategy is proposed to select the most relevant detectors quickly. The proposed approach is tested on data sets of human hands, vehicles and human faces. On all data sets, the proposed approach achieves improved detection accuracy over the best competing approaches. In the second part of the thesis, we formulate a filter-and-refine scheme to speed up recognition processes. The binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the face recognition grand challenge version 2 data set, hand shape detection and parameter estimation on a hand data set, and vehicle detection and estimation of the view angle on a multi-pose vehicle data set. On all data sets, our approach is at least five times faster than simply evaluating all foreground state hypotheses with virtually no loss in classification accuracy.
Resumo:
A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.
Resumo:
A common design of an object recognition system has two steps, a detection step followed by a foreground within-class classification step. For example, consider face detection by a boosted cascade of detectors followed by face ID recognition via one-vs-all (OVA) classifiers. Another example is human detection followed by pose recognition. Although the detection step can be quite fast, the foreground within-class classification process can be slow and becomes a bottleneck. In this work, we formulate a filter-and-refine scheme, where the binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the FRGC V2 data set, hand shape detection and parameter estimation on a hand data set and vehicle detection and view angle estimation on a multi-view vehicle data set. On all data sets, our approach has comparable accuracy and is at least five times faster than the brute force approach.
Resumo:
A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.