10 resultados para Obiettivo, Coaching, MyGoal, Interattività, Mobile
em Boston University Digital Common
Resumo:
We discuss the design principles of TCP within the context of heterogeneous wired/wireless networks and mobile networking. We identify three shortcomings in TCP's behavior: (i) the protocol's error detection mechanism, which does not distinguish different types of errors and thus does not suffice for heterogeneous wired/wireless environments, (ii) the error recovery, which is not responsive to the distinctive characteristics of wireless networks such as transient or burst errors due to handoffs and fading channels, and (iii) the protocol strategy, which does not control the tradeoff between performance measures such as goodput and energy consumption, and often entails a wasteful effort of retransmission and energy expenditure. We discuss a solution-framework based on selected research proposals and the associated evaluation criteria for the suggested modifications. We highlight an important angle that did not attract the required attention so far: the need for new performance metrics, appropriate for evaluating the impact of protocol strategies on battery-powered devices.
Resumo:
Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance.
Resumo:
We consider a mobile sensor network monitoring a spatio-temporal field. Given limited cache sizes at the sensor nodes, the goal is to develop a distributed cache management algorithm to efficiently answer queries with a known probability distribution over the spatial dimension. First, we propose a novel distributed information theoretic approach in which the nodes locally update their caches based on full knowledge of the space-time distribution of the monitored phenomenon. At each time instant, local decisions are made at the mobile nodes concerning which samples to keep and whether or not a new sample should be acquired at the current location. These decisions account for minimizing an entropic utility function that captures the average amount of uncertainty in queries given the probability distribution of query locations. Second, we propose a different correlation-based technique, which only requires knowledge of the second-order statistics, thus relaxing the stringent constraint of having a priori knowledge of the query distribution, while significantly reducing the computational overhead. It is shown that the proposed approaches considerably improve the average field estimation error by maintaining efficient cache content. It is further shown that the correlation-based technique is robust to model mismatch in case of imperfect knowledge of the underlying generative correlation structure.
Resumo:
The pervasiveness of personal computing platforms offers an unprecedented opportunity to deploy large-scale services that are distributed over wide physical spaces. Two major challenges face the deployment of such services: the often resource-limited nature of these platforms, and the necessity of preserving the autonomy of the owner of these devices. These challenges preclude using centralized control and preclude considering services that are subject to performance guarantees. To that end, this thesis advances a number of new distributed resource management techniques that are shown to be effective in such settings, focusing on two application domains: distributed Field Monitoring Applications (FMAs), and Message Delivery Applications (MDAs). In the context of FMA, this thesis presents two techniques that are well-suited to the fairly limited storage and power resources of autonomously mobile sensor nodes. The first technique relies on amorphous placement of sensory data through the use of novel storage management and sample diffusion techniques. The second approach relies on an information-theoretic framework to optimize local resource management decisions. Both approaches are proactive in that they aim to provide nodes with a view of the monitored field that reflects the characteristics of queries over that field, enabling them to handle more queries locally, and thus reduce communication overheads. Then, this thesis recognizes node mobility as a resource to be leveraged, and in that respect proposes novel mobility coordination techniques for FMAs and MDAs. Assuming that node mobility is governed by a spatio-temporal schedule featuring some slack, this thesis presents novel algorithms of various computational complexities to orchestrate the use of this slack to improve the performance of supported applications. The findings in this thesis, which are supported by analysis and extensive simulations, highlight the importance of two general design principles for distributed systems. First, a-priori knowledge (e.g., about the target phenomena of FMAs and/or the workload of either FMAs or DMAs) could be used effectively for local resource management. Second, judicious leverage and coordination of node mobility could lead to significant performance gains for distributed applications deployed over resource-impoverished infrastructures.
Resumo:
Recent advances in processor speeds, mobile communications and battery life have enabled computers to evolve from completely wired to completely mobile. In the most extreme case, all nodes are mobile and communication takes place at available opportunities – using both traditional communication infrastructure as well as the mobility of intermediate nodes. These are mobile opportunistic networks. Data communication in such networks is a difficult problem, because of the dynamic underlying topology, the scarcity of network resources and the lack of global information. Establishing end-to-end routes in such networks is usually not feasible. Instead a store-and-carry forwarding paradigm is better suited for such networks. This dissertation describes and analyzes algorithms for forwarding of messages in such networks. In order to design effective forwarding algorithms for mobile opportunistic networks, we start by first building an understanding of the set of all paths between nodes, which represent the available opportunities for any forwarding algorithm. Relying on real measurements, we enumerate paths between nodes and uncover what we refer to as the path explosion effect. The term path explosion refers to the fact that the number of paths between a randomly selected pair of nodes increases exponentially with time. We draw from the theory of epidemics to model and explain the path explosion effect. This is the first contribution of the thesis, and is a key observation that underlies subsequent results. Our second contribution is the study of forwarding algorithms. For this, we rely on trace driven simulations of different algorithms that span a range of design dimensions. We compare the performance (success rate and average delay) of these algorithms. We make the surprising observation that most algorithms we consider have roughly similar performance. We explain this result in light of the path explosion phenomenon. While the performance of most algorithms we studied was roughly the same, these algorithms differed in terms of cost. This prompted us to focus on designing algorithms with the explicit intent of reducing costs. For this, we cast the problem of forwarding as an optimal stopping problem. Our third main contribution is the design of strategies based on optimal stopping principles which we refer to as Delegation schemes. Our analysis shows that using a delegation scheme reduces cost over naive forwarding by a factor of O(√N), where N is the number of nodes in the network. We further validate this result on real traces, where the cost reduction observed is even greater. Our results so far include a key assumption, which is unbounded buffers on nodes. Next, we relax this assumption, so that the problem shifts to one of prioritization of messages for transmission and dropping. Our fourth contribution is the study of message prioritization schemes, combined with forwarding. Our main result is that one achieves higher performance by assigning higher priorities to young messages in the network. We again interpret this result in light of the path explosion effect.
Resumo:
Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node's resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage at each node. Motivated by content networking applications -- including web caching, CDNs, and P2P -- this paper extends our previous work on the on-line version of the problem, which was conducted under a game-theoretic framework, and limited to object replication. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache management policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that on-line cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. To appear in a substantial manner, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the "outlier" characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes. Our framework utilizes a simple control-theoretic approach to dynamically parameterize the cache management scheme. We show performance evaluation results that quantify the benefits from instantiating such a framework, which could be substantial under skewed demand profiles.
Resumo:
Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.
Resumo:
Personal communication devices are increasingly equipped with sensors that are able to collect and locally store information from their environs. The mobility of users carrying such devices, and hence the mobility of sensor readings in space and time, opens new horizons for interesting applications. In particular, we envision a system in which the collective sensing, storage and communication resources, and mobility of these devices could be leveraged to query the state of (possibly remote) neighborhoods. Such queries would have spatio-temporal constraints which must be met for the query answers to be useful. Using a simplified mobility model, we analytically quantify the benefits from cooperation (in terms of the system's ability to satisfy spatio-temporal constraints), which we show to go beyond simple space-time tradeoffs. In managing the limited storage resources of such cooperative systems, the goal should be to minimize the number of unsatisfiable spatio-temporal constraints. We show that Data Centric Storage (DCS), or "directed placement", is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, "amorphous placement", in which sensory samples are cached locally, and shuffling of cached samples is used to diffuse the sensory data throughout the whole network. We evaluate conditions under which directed versus amorphous placement strategies would be more efficient. These results lead us to propose a hybrid placement strategy, in which the spatio-temporal constraints associated with a sensory data type determine the most appropriate placement strategy for that data type. We perform an extensive simulation study to evaluate the performance of directed, amorphous, and hybrid placement protocols when applied to queries that are subject to timing constraints. Our results show that, directed placement is better for queries with moderately tight deadlines, whereas amorphous placement is better for queries with looser deadlines, and that under most operational conditions, the hybrid technique gives the best compromise.
Resumo:
An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.
Resumo:
This article introduces an unsupervised neural architecture for the control of a mobile robot. The system allows incremental learning of the plant during robot operation, with robust performance despite unexpected changes of robot parameters such as wheel radius and inter-wheel distance. The model combines Vector associative Map (VAM) learning and associate learning, enabling the robot to reach targets at arbitrary distances without knowledge of the robot kinematics and without trajectory recording, but relating wheel velocities with robot movements.