37 resultados para Node

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current research on Internet-based distributed systems emphasizes the scalability of overlay topologies for efficient search and retrieval of data items, as well as routing amongst peers. However, most existing approaches fail to address the transport of data across these logical networks in accordance with quality of service (QoS) constraints. Consequently, this paper investigates the use of scalable overlay topologies for routing real-time media streams between publishers and potentially many thousands of subscribers. Specifically, we analyze the costs of using k-ary n-cubes for QoS-constrained routing. Given a number of nodes in a distributed system, we calculate the optimal k-ary n-cube structure for minimizing the average distance between any pair of nodes. Using this structure, we describe a greedy algorithm that selects paths between nodes in accordance with the real-time delays along physical links. We show this method improves the routing latencies by as much as 67%, compared to approaches that do not consider physical link costs. We are in the process of developing a method for adaptive node placement in the overlay topology, based upon the locations of publishers, subscribers, physical link costs and per-subscriber QoS constraints. One such method for repositioning nodes in logical space is discussed, to improve the likelihood of meeting service requirements on data routed between publishers and subscribers. Future work will evaluate the benefits of such techniques more thoroughly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources-this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We also assume that the sensors are randomly (uniformly) distributed and are not mobile, the coordinates of the sink and the dimensions of the sensor field are known. We show that the behavior of such sensor networks becomes very unstable once the first node dies, especially in the presence of node heterogeneity. Classical clustering protocols assume that all the nodes are equipped with the same amount of energy and as a result, they can not take full advantage of the presence of node heterogeneity. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commonly, research work in routing for delay tolerant networks (DTN) assumes that node encounters are predestined, in the sense that they are the result of unknown, exogenous processes that control the mobility of these nodes. In this paper, we argue that for many applications such an assumption is too restrictive: while the spatio-temporal coordinates of the start and end points of a node's journey are determined by exogenous processes, the specific path that a node may take in space-time, and hence the set of nodes it may encounter could be controlled in such a way so as to improve the performance of DTN routing. To that end, we consider a setting in which each mobile node is governed by a schedule consisting of a ist of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged for DTN message delivery purposes. We define the Mobility Coordination Problem (MCP) for DTNs as follows: Given a set of nodes, each with its own schedule, and a set of messages to be exchanged between these nodes, devise a set of node encounters that minimize message delivery delays while satisfying all node schedules. The MCP for DTNs is general enough that it allows us to model and evaluate some of the existing DTN schemes, including data mules and message ferries. In this paper, we show that MCP for DTNs is NP-hard and propose two detour-based approaches to solve the problem. The first (DMD) is a centralized heuristic that leverages knowledge of the message workload to suggest specific detours to optimize message delivery. The second (DNE) is a distributed heuristic that is oblivious to the message workload, and which selects detours so as to maximize node encounters. We evaluate the performance of these detour-based approaches using extensive simulations based on synthetic workloads as well as real schedules obtained from taxi logs in a major metropolitan area. Our evaluation shows that our centralized, workload-aware DMD approach yields the best performance, in terms of message delay and delivery success ratio, and that our distributed, workload-oblivious DNE approach yields favorable performance when compared to approaches that require the use of data mules and message ferries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how "content" should be routed. For example, content may be diverted through an intermediary DTN node for the purposes of preprocessing, authentication, etc. To support such capability, we implement Predicate Routing [7] where high-level constraints of DTN nodes are mapped into low-level routing predicates at the MANET level. Our testbed uses a Linux system architecture and leverages User Mode Linux [2] to emulate every node running a DTN Reference Implementation code [5]. In our initial prototype, we use the On Demand Distance Vector (AODV) MANET routing protocol. We use the network simulator ns-2 (ns-emulation version) to simulate the mobility and wireless connectivity of both DTN and MANET nodes. We show preliminary throughput results showing the efficient and correct operation of propagating routing predicates, and as a side effect, the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connection into shorter-length TCP connections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to peer-to-peer file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and rewiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a distributed overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using extensive measurements of paths between nodes, we demonstrate that Egoist’s neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we use a multiplayer peer-to-peer game to demonstrate the value of Egoist to end-user applications. This technical report supersedes BUCS-TR-2007-013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an online distributed algorithm, the Causation Logging Algorithm (CLA), in which Autonomous Systems (ASes) in the Internet individually report route oscillations/flaps they experience to a central Internet Routing Registry (IRR). The IRR aggregates these reports and may observe what we call causation chains where each node on the chain caused a route flap at the next node along the chain. A chain may also have a causation cycle. The type of an observed causation chain/cycle allows the IRR to infer the underlying policy routing configuration (i.e., the system of economic relationships and constraints on route/path preferences). Our algorithm is based on a formal policy routing model that captures the propagation dynamics of route flaps under arbitrary changes in topology or path preferences. We derive invariant properties of causation chains/cycles for ASes which conform to economic relationships based on the popular Gao-Rexford model. The Gao-Rexford model is known to be safe in the sense that the system always converges to a stable set of paths under static conditions. Our CLA algorithm recovers the type/property of an observed causation chain of an underlying system and determines whether it conforms to the safe economic Gao-Rexford model. Causes for nonconformity can be diagnosed by comparing the properties of the causation chains with those predicted from different variants of the Gao-Rexford model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Localization is essential feature for many mobile wireless applications. Data collected from applications such as environmental monitoring, package tracking or position tracking has no meaning without knowing the location of this data. Other applications have location information as a building block for example, geographic routing protocols, data dissemination protocols and location-based services such as sensing coverage. Many of the techniques have the trade-off among many features such as deployment of special hardware, level of accuracy and computation power. In this paper, we present an algorithm that extracts location constraints from the connectivity information. Our solution, which does not require any special hardware and a small number of landmark nodes, uses two types of location constraints. The spatial constraints derive the estimated locations observing which nodes are within communication range of each other. The temporal constraints refine the areas, computed by the spatial constraints, using properties of time and space extracted from a contact trace. The intuition of the temporal constraints is to limit the possible locations that a node can be using its previous and future locations. To quantify this intuitive improvement in refine the nodes estimated areas adding temporal information, we performed simulations using synthetic and real contact traces. The results show this improvement and also the difficulties of using real traces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pervasiveness of personal computing platforms offers an unprecedented opportunity to deploy large-scale services that are distributed over wide physical spaces. Two major challenges face the deployment of such services: the often resource-limited nature of these platforms, and the necessity of preserving the autonomy of the owner of these devices. These challenges preclude using centralized control and preclude considering services that are subject to performance guarantees. To that end, this thesis advances a number of new distributed resource management techniques that are shown to be effective in such settings, focusing on two application domains: distributed Field Monitoring Applications (FMAs), and Message Delivery Applications (MDAs). In the context of FMA, this thesis presents two techniques that are well-suited to the fairly limited storage and power resources of autonomously mobile sensor nodes. The first technique relies on amorphous placement of sensory data through the use of novel storage management and sample diffusion techniques. The second approach relies on an information-theoretic framework to optimize local resource management decisions. Both approaches are proactive in that they aim to provide nodes with a view of the monitored field that reflects the characteristics of queries over that field, enabling them to handle more queries locally, and thus reduce communication overheads. Then, this thesis recognizes node mobility as a resource to be leveraged, and in that respect proposes novel mobility coordination techniques for FMAs and MDAs. Assuming that node mobility is governed by a spatio-temporal schedule featuring some slack, this thesis presents novel algorithms of various computational complexities to orchestrate the use of this slack to improve the performance of supported applications. The findings in this thesis, which are supported by analysis and extensive simulations, highlight the importance of two general design principles for distributed systems. First, a-priori knowledge (e.g., about the target phenomena of FMAs and/or the workload of either FMAs or DMAs) could be used effectively for local resource management. Second, judicious leverage and coordination of node mobility could lead to significant performance gains for distributed applications deployed over resource-impoverished infrastructures.