1 resultado para National Cancer Institute (U.S.)
em Boston University Digital Common
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (168)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (13)
- Biodiversity Heritage Library, United States (7)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (8)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (4)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (25)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (95)
- Queensland University of Technology - ePrints Archive (20)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (3)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (23)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (403)
- University of Queensland eSpace - Australia (5)
- University of Washington (3)
- USA Library of Congress (4)
- WestminsterResearch - UK (2)
Resumo:
This paper introduces BoostMap, a method that can significantly reduce retrieval time in image and video database systems that employ computationally expensive distance measures, metric or non-metric. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. Embedding construction is formulated as a machine learning task, where AdaBoost is used to combine many simple, 1D embeddings into a multidimensional embedding that preserves a significant amount of the proximity structure in the original space. Performance is evaluated in a hand pose estimation system, and a dynamic gesture recognition system, where the proposed method is used to retrieve approximate nearest neighbors under expensive image and video similarity measures. In both systems, BoostMap significantly increases efficiency, with minimal losses in accuracy. Moreover, the experiments indicate that BoostMap compares favorably with existing embedding methods that have been employed in computer vision and database applications, i.e., FastMap and Bourgain embeddings.