9 resultados para Music similarity
em Boston University Digital Common
Resumo:
Abstract unavailable.
Resumo:
This project investigates how religious music, invested with symbolic and cultural meaning, provided African Americans in border city churches with a way to negotiate conflict, assert individual values, and establish a collective identity in the post- emancipation era. In order to focus on the encounter between former slaves and free Blacks, the dissertation examines black churches that received large numbers of southern migrants during and after the Civil War. Primarily a work of history, the study also employs insights and conceptual frameworks from other disciplines including anthropology and ritual studies, African American studies, aesthetic theory, and musicology. It is a work of historical reconstruction in the tradition of scholarship that some have called "lived religion." Chapter 1 introduces the dissertation topic and explains how it contributes to scholarship. Chapter 2 examines social and religious conditions African Americans faced in Baltimore, MD, Philadelphia, PA, and Washington, DC to show why the Black Church played a key role in African Americans' adjustment to post-emancipation life. Chapter 3 compares religious slave music and free black church music to identify differences and continuities between them, as well as their functions in religious settings. Chapters 4, 5, and 6 present case studies on Bethel African Methodist Episcopal Church (Baltimore), Zoar Methodist Episcopal Church (Philadelphia), and St. Luke’s Protestant Episcopal Church (Washington, DC), respectively. Informed by fresh archival materials, the dissertation shows how each congregation used its musical life to uphold values like education and community, to come to terms with a shared experience, and to confront or avert authority when cultural priorities were threatened. By arguing over musical choices or performance practices, or agreeing on mutually appealing musical forms like the gospel songs of the Sunday school movement, African Americans forged lively faith communities and distinctive cultures in otherwise adverse environments. The study concludes that religious music was a crucial form of African American discourse and expression in the post-emancipation era. In the Black Church, it nurtured an atmosphere of exchange, gave structure and voice to conflict, helped create a public sphere, and upheld the values of black people.
Resumo:
This paper introduces BoostMap, a method that can significantly reduce retrieval time in image and video database systems that employ computationally expensive distance measures, metric or non-metric. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. Embedding construction is formulated as a machine learning task, where AdaBoost is used to combine many simple, 1D embeddings into a multidimensional embedding that preserves a significant amount of the proximity structure in the original space. Performance is evaluated in a hand pose estimation system, and a dynamic gesture recognition system, where the proposed method is used to retrieve approximate nearest neighbors under expensive image and video similarity measures. In both systems, BoostMap significantly increases efficiency, with minimal losses in accuracy. Moreover, the experiments indicate that BoostMap compares favorably with existing embedding methods that have been employed in computer vision and database applications, i.e., FastMap and Bourgain embeddings.
Resumo:
Recently the notion of self-similarity has been shown to apply to wide-area and local-area network traffic. In this paper we examine the mechanisms that give rise to self-similar network traffic. We present an explanation for traffic self-similarity by using a particular subset of wide area traffic: traffic due to the World Wide Web (WWW). Using an extensive set of traces of actual user executions of NCSA Mosaic, reflecting over half a million requests for WWW documents, we show evidence that WWW traffic is self-similar. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network. To do this we rely on empirically measured distributions both from our traces and from data independently collected at over thirty WWW sites.
Resumo:
Long-range dependence has been observed in many recent Internet traffic measurements. In addition, some recent studies have shown that under certain network conditions, TCP itself can produce traffic that exhibits dependence over limited timescales, even in the absence of higher-level variability. In this paper, we use a simple Markovian model to argue that when the loss rate is relatively high, TCP's adaptive congestion control mechanism indeed generates traffic with OFF periods exhibiting power-law shape over several timescales and thus introduces pseudo-long-range dependence into the overall traffic. Moreover, we observe that more variable initial retransmission timeout values for different packets introduces more variable packet inter-arrival times, which increases the burstiness of the overall traffic. We can thus explain why a single TCP connection can produce a time-series that can be misidentified as self-similar using standard tests.
Resumo:
Locating hands in sign language video is challenging due to a number of factors. Hand appearance varies widely across signers due to anthropometric variations and varying levels of signer proficiency. Video can be captured under varying illumination, camera resolutions, and levels of scene clutter, e.g., high-res video captured in a studio vs. low-res video gathered by a web cam in a user’s home. Moreover, the signers’ clothing varies, e.g., skin-toned clothing vs. contrasting clothing, short-sleeved vs. long-sleeved shirts, etc. In this work, the hand detection problem is addressed in an appearance matching framework. The Histogram of Oriented Gradient (HOG) based matching score function is reformulated to allow non-rigid alignment between pairs of images to account for hand shape variation. The resulting alignment score is used within a Support Vector Machine hand/not-hand classifier for hand detection. The new matching score function yields improved performance (in ROC area and hand detection rate) over the Vocabulary Guided Pyramid Match Kernel (VGPMK) and the traditional, rigid HOG distance on American Sign Language video gestured by expert signers. The proposed match score function is computationally less expensive (for training and testing), has fewer parameters and is less sensitive to parameter settings than VGPMK. The proposed detector works well on test sequences from an inexpert signer in a non-studio setting with cluttered background.
Resumo:
Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.
Resumo:
The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.