1 resultado para Multi-modality medical images
em Boston University Digital Common
Filtro por publicador
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (19)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Bioline International (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (76)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (13)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- CUNY Academic Works (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (104)
- Digital Peer Publishing (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (29)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (12)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (22)
- Instituto Politécnico de Leiria (3)
- Instituto Politécnico do Porto, Portugal (1)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (315)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Uruguai (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- University of Michigan (1)
- University of Queensland eSpace - Australia (25)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
We propose a novel image registration framework which uses classifiers trained from examples of aligned images to achieve registration. Our approach is designed to register images of medical data where the physical condition of the patient has changed significantly and image intensities are drastically different. We use two boosted classifiers for each degree of freedom of image transformation. These two classifiers can both identify when two images are correctly aligned and provide an efficient means of moving towards correct registration for misaligned images. The classifiers capture local alignment information using multi-pixel comparisons and can therefore achieve correct alignments where approaches like correlation and mutual-information which rely on only pixel-to-pixel comparisons fail. We test our approach using images from CT scans acquired in a study of acute respiratory distress syndrome. We show significant increase in registration accuracy in comparison to an approach using mutual information.