3 resultados para Modena, Leone, 1571-1648.
em Boston University Digital Common
Resumo:
http://www.archive.org/details/earlypromotedame00coxwuoft
Resumo:
The explosion of WWW traffic necessitates an accurate picture of WWW use, and in particular requires a good understanding of client requests for WWW documents. To address this need, we have collected traces of actual executions of NCSA Mosaic, reflecting over half a million user requests for WWW documents. In this paper we describe the methods we used to collect our traces, and the formats of the collected data. Next, we present a descriptive statistical summary of the traces we collected, which identifies a number of trends and reference patterns in WWW use. In particular, we show that many characteristics of WWW use can be modelled using power-law distributions, including the distribution of document sizes, the popularity of documents as a function of size, the distribution of user requests for documents, and the number of references to documents as a function of their overall rank in popularity (Zipf's law). Finally, we show how the power-law distributions derived from our traces can be used to guide system designers interested in caching WWW documents.
Resumo:
A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.