3 resultados para Mobility and roaming
em Boston University Digital Common
Resumo:
Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.
Resumo:
We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how "content" should be routed. For example, content may be diverted through an intermediary DTN node for the purposes of preprocessing, authentication, etc. To support such capability, we implement Predicate Routing [7] where high-level constraints of DTN nodes are mapped into low-level routing predicates at the MANET level. Our testbed uses a Linux system architecture and leverages User Mode Linux [2] to emulate every node running a DTN Reference Implementation code [5]. In our initial prototype, we use the On Demand Distance Vector (AODV) MANET routing protocol. We use the network simulator ns-2 (ns-emulation version) to simulate the mobility and wireless connectivity of both DTN and MANET nodes. We show preliminary throughput results showing the efficient and correct operation of propagating routing predicates, and as a side effect, the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connection into shorter-length TCP connections.
Resumo:
Abstract: The Ambient Calculus was developed by Cardelli and Gordon as a formal framework to study issues of mobility and migrant code. We consider an Ambient Calculus where ambients transport and exchange programs rather that just inert data. We propose different senses in which such a calculus can be said to be polymorphically typed, and design accordingly a polymorphic type system for it. Our type system assigns types to embedded programs and what we call behaviors to processes; a denotational semantics of behaviors is then proposed, here called trace semantics, underlying much of the remaining analysis. We state and prove a Subject Reduction property for our polymorphically typed calculus. Based on techniques borrowed from finite automata theory, type-checking of fully type-annotated processes is shown to be decidable; the time complexity of our decision procedure is exponential (this is a worst-case in theory, arguably not encountered in practice). Our polymorphically-typed calculus is a conservative extension of the typed Ambient Calculus originally proposed by Cardelli and Gordon.