3 resultados para Mid-class black paulistan
em Boston University Digital Common
Resumo:
http://www.archive.org/details/blackrobesorsket00nevirich
Resumo:
High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.
Resumo:
The congestion control mechanisms of TCP make it vulnerable in an environment where flows with different congestion-sensitivity compete for scarce resources. With the increasing amount of unresponsive UDP traffic in today's Internet, new mechanisms are needed to enforce fairness in the core of the network. We propose a scalable Diffserv-like architecture, where flows with different characteristics are classified into separate service queues at the routers. Such class-based isolation provides protection so that flows with different characteristics do not negatively impact one another. In this study, we examine different aspects of UDP and TCP interaction and possible gains from segregating UDP and TCP into different classes. We also investigate the utility of further segregating TCP flows into two classes, which are class of short and class of long flows. Results are obtained analytically for both Tail-drop and Random Early Drop (RED) routers. Class-based isolation have the following salient features: (1) better fairness, (2) improved predictability for all kinds of flows, (3) lower transmission delay for delay-sensitive flows, and (4) better control over Quality of Service (QoS) of a particular traffic type.