2 resultados para Messaging, Request Responce, Formal Models
em Boston University Digital Common
Resumo:
In research areas involving mathematical rigor, there are numerous benefits to adopting a formal representation of models and arguments: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, broad accessibility has not been a priority in the design of formal verification tools that can provide these benefits. We propose a few design criteria to address these issues: a simple, familiar, and conventional concrete syntax that is independent of any environment, application, or verification strategy, and the possibility of reducing workload and entry costs by employing features selectively. We demonstrate the feasibility of satisfying such criteria by presenting our own formal representation and verification system. Our system’s concrete syntax overlaps with English, LATEX and MediaWiki markup wherever possible, and its verifier relies on heuristic search techniques that make the formal authoring process more manageable and consistent with prevailing practices. We employ techniques and algorithms that ensure a simple, uniform, and flexible definition and design for the system, so that it easy to augment, extend, and improve.
Resumo:
In work that involves mathematical rigor, there are numerous benefits to adopting a representation of models and arguments that can be supplied to a formal reasoning or verification system: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, accessibility has not been a priority in the design of formal verification tools that can provide these benefits. In earlier work [Lap09a], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. This work expands one aspect of the earlier work by considering more extensively an essential capability for any formal reasoning system whose design is oriented around simulating the natural context: native support for a collection of mathematical relations that deal with common constructs in arithmetic and set theory. We provide a formal definition for a context of relations that can be used to both validate and assist formal reasoning activities. We provide a proof that any algorithm that implements this formal structure faithfully will necessary converge. Finally, we consider the efficiency of an implementation of this formal structure that leverages modular implementations of well-known data structures: balanced search trees and transitive closures of hypergraphs.