5 resultados para Massive Corals

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an n-way broadcast application each one of n overlay nodes wants to push its own distinct large data file to all other n-1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of receivers and thus, by necessity, employs an almost random overlay topology. n-way broadcast applications on the other hand, owing to their inherent n-squared nature, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a consequence deliver far superior performance compared to random and myopic (local) approaches. We present the Max-Min and MaxSum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using trace-driven simulation and measurements from a PlanetLab prototype implementation, we demonstrate that the performance of swarming on top of our constructed topologies is far superior to the performance of random and myopic overlays. Moreover, we show how to modify our swarming protocol to allow it to accommodate selfish nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data streaming model provides an attractive framework for one-pass summarization of massive data sets at a single observation point. However, in an environment where multiple data streams arrive at a set of distributed observation points, sketches must be computed remotely and then must be aggregated through a hierarchy before queries may be conducted. As a result, many sketch-based methods for the single stream case do not apply directly, as either the error introduced becomes large, or because the methods assume that the streams are non-overlapping. These limitations hinder the application of these techniques to practical problems in network traffic monitoring and aggregation in sensor networks. To address this, we develop a general framework for evaluating and enabling robust computation of duplicate-sensitive aggregate functions (e.g., SUM and QUANTILE), over data produced by distributed sources. We instantiate our approach by augmenting the Count-Min and Quantile-Digest sketches to apply in this distributed setting, and analyze their performance. We conclude with experimental evaluation to validate our analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing or visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greaterr persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence: due to adaptation with a stimulus of like orientation, an increase or persistence due to adaptation with a stimulus of perpendicular orientation, and an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.