2 resultados para Martello, Pier Jacopo, 1665-1727.

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new, simple, efficient data structures for approximate reconciliation of set differences, a useful standalone primitive for peer-to-peer networks and a natural subroutine in methods for exact reconciliation. In the approximate reconciliation problem, peers A and B respectively have subsets of elements SA and SB of a large universe U. Peer A wishes to send a short message M to peer B with the goal that B should use M to determine as many elements in the set SB–SA as possible. To avoid the expense of round trip communication times, we focus on the situation where a single message M is sent. We motivate the performance tradeoffs between message size, accuracy and computation time for this problem with a straightforward approach using Bloom filters. We then introduce approximation reconciliation trees, a more computationally efficient solution that combines techniques from Patricia tries, Merkle trees, and Bloom filters. We present an analysis of approximation reconciliation trees and provide experimental results comparing the various methods proposed for approximate reconciliation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.