7 resultados para Marsi, Paolo, 1440-1484.
em Boston University Digital Common
Resumo:
Stabilized micron-sized bubbles, known as contrast agents, are often injected into the body to enhance ultrasound imaging of blood flow. The ability to detect such bubbles in blood depends on the relative magnitude of the acoustic power backscattered from the microbubbles (‘signal’) to the power backscattered from the red blood cells (‘noise’). Erythrocytes are acoustically small (Rayleigh regime), weak scatterers, and therefore the backscatter coefficient (BSC) of blood increases as the fourth power of frequency throughout the diagnostic frequency range. Microbubbles, on the other hand, are either resonant or super-resonant in the range 5-30 MHz. Above resonance, their total scattering cross-section remains constant with increasing frequency. In the present thesis, a theoretical model of the BSC of a suspension of red blood cells is presented and compared to the BSC of Optison® contrast agent microbubbles. It is predicted that, as the frequency increases, the BSC of red blood cell suspensions eventually exceeds the BSC of the strong scattering microbubbles, leading to a dramatic reduction in signal-to-noise ratio (SNR). This decrease in SNR with increasing frequency was also confirmed experimentally by use of an active cavitation detector for different concentrations of Optison® microbubbles in erythrocyte suspensions of different hematocrits. The magnitude of the observed decrease in SNR correlated well with theoretical predictions in most cases, except for very dense suspensions of red blood cells, where it is hypothesized that the close proximity of erythrocytes inhibits the acoustic response of the microbubbles.
Resumo:
Two new notions of reduction for terms of the λ-calculus are introduced and the question of whether a λ-term is beta-strongly normalizing is reduced to the question of whether a λ-term is merely normalizing under one of the new notions of reduction. This leads to a new way to prove beta-strong normalization for typed λ-calculi. Instead of the usual semantic proof style based on Girard's "candidats de réductibilité'', termination can be proved using a decreasing metric over a well-founded ordering in a style more common in the field of term rewriting. This new proof method is applied to the simply-typed λ-calculus and the system of intersection types.
Resumo:
This article describes a nonlinear model of neural processing in the vertebrate retina, comprising model photoreceptors, model push-pull bipolar cells, and model ganglion cells. Previous analyses and simulations have shown that with a choice of parameters that mimics beta cells, the model exhibits X-like linear spatial summation (null response to contrast-reversed gratings) in spite of photoreceptor nonlinearities; on the other hand, a choice of parameters that mimics alpha cells leads to Y-like frequency doubling. This article extends the previous work by showing that the model can replicate qualitatively many of the original findings on X and Y cells with a fixed choice of parameters. The results generally support the hypothesis that X and Y cells can be seen as functional variants of a single neural circuit. The model also suggests that both depolarizing and hyperpolarizing bipolar cells converge onto both ON and OFF ganglion cell types. The push-pull connectivity enables ganglion cells to remain sensitive to deviations about the mean output level of nonlinear photoreceptors. These and other properties of the push-pull model are discussed in the general context of retinal processing of spatiotemporal luminance patterns.
Resumo:
This article introduces an unsupervised neural architecture for the control of a mobile robot. The system allows incremental learning of the plant during robot operation, with robust performance despite unexpected changes of robot parameters such as wheel radius and inter-wheel distance. The model combines Vector associative Map (VAM) learning and associate learning, enabling the robot to reach targets at arbitrary distances without knowledge of the robot kinematics and without trajectory recording, but relating wheel velocities with robot movements.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
This article introduces a quantitative model of early visual system function. The model is formulated to unify analyses of spatial and temporal information processing by the nervous system. Functional constraints of the model suggest mechanisms analogous to photoreceptors, bipolar cells, and retinal ganglion cells, which can be formally represented with first order differential equations. Preliminary numerical simulations and analytical results show that the same formal mechanisms can explain the behavior of both X (linear) and Y (nonlinear) retinal ganglion cell classes by simple changes in the relative width of the receptive field (RF) center and surround mechanisms. Specifically, an increase in the width of the RF center results in a change from X-like to Y-like response, in agreement with anatomical data on the relationship between α- and
Resumo:
A computational model of visual processing in the vertebrate retina provides a unified explanation of a range of data previously treated by disparate models. Three results are reported here: the model proposes a functional explanation for the primary feed-forward retinal circuit found in vertebrate retinae, it shows how this retinal circuit combines nonlinear adaptation with the desirable properties of linear processing, and it accounts for the origin of parallel transient (nonlinear) and sustained (linear) visual processing streams as simple variants of the same retinal circuit. The retina, owing to its accessibility and to its fundamental role in the initial transduction of light into neural signals, is among the most extensively studied neural structures in the nervous system. Since the pioneering anatomical work by Ramón y Cajal at the turn of the last century[1], technological advances have abetted detailed descriptions of the physiological, pharmacological, and functional properties of many types of retinal cells. However, the relationship between structure and function in the retina is still poorly understood. This article outlines a computational model developed to address fundamental constraints of biological visual systems. Neurons that process nonnegative input signals-such as retinal illuminance-are subject to an inescapable tradeoff between accurate processing in the spatial and temporal domains. Accurate processing in both domains can be achieved with a model that combines nonlinear mechanisms for temporal and spatial adaptation within three layers of feed-forward processing. The resulting architecture is structurally similar to the feed-forward retinal circuit connecting photoreceptors to retinal ganglion cells through bipolar cells. This similarity suggests that the three-layer structure observed in all vertebrate retinae[2] is a required minimal anatomy for accurate spatiotemporal visual processing. This hypothesis is supported through computer simulations showing that the model's output layer accounts for many properties of retinal ganglion cells[3],[4],[5],[6]. Moreover, the model shows how the retina can extend its dynamic range through nonlinear adaptation while exhibiting seemingly linear behavior in response to a variety of spatiotemporal input stimuli. This property is the basis for the prediction that the same retinal circuit can account for both sustained (X) and transient (Y) cat ganglion cells[7] by simple morphological changes. The ability to generate distinct functional behaviors by simple changes in cell morphology suggests that different functional pathways originating in the retina may have evolved from a unified anatomy designed to cope with the constraints of low-level biological vision.