1 resultado para Markov chains. Convergence. Evolutionary Strategy. Large Deviations
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (7)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (45)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Boston University Digital Common (1)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (57)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (9)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (78)
- Instituto Politécnico do Porto, Portugal (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (34)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (10)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (85)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (64)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (10)
- Universidad del Rosario, Colombia (15)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universita di Parma (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (32)
- University of Southampton, United Kingdom (16)
- University of Washington (3)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.