4 resultados para Machine costs
em Boston University Digital Common
Resumo:
Studies suggest that income replacement is low for many workers with serious occupational injuries and illnesses. This review discusses three areas that hold promise for raising benefits to workers while reducing workers' compensation costs to employers: improving safety, containing medical costs, and reducing litigation. In theory, workers' compensation increases the costs to employers of injuries and so provides incentives to improve safety. Yet, taken as a whole, research does not provide convincing evidence that workers' compensation reduces injury rates. Moreover, unlike safety and health regulation, workers' compensation focuses the attention of employers on individual workers. High costs may lead employers to discourage claims and litigate when claims are filed. Controlling medical costs can reduce workers' compensation costs. Most studies, however, have focused on costs and have not addressed the effectiveness of medical care or patient satisfaction. Research also has shown that workers' compensation systems can reduce the need for litigation. Without litigation, benefits can be delivered more quickly and at lower costs.
Resumo:
BoostMap is a recently proposed method for efficient approximate nearest neighbor retrieval in arbitrary non-Euclidean spaces with computationally expensive and possibly non-metric distance measures. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. The key idea is formulating embedding construction as a machine learning task, where AdaBoost is used to combine simple, 1D embeddings into a multidimensional embedding that preserves a large amount of the proximity structure of the original space. This paper demonstrates that, using the machine learning formulation of BoostMap, we can optimize embeddings for indexing and classification, in ways that are not possible with existing alternatives for constructive embeddings, and without additional costs in retrieval time. First, we show how to construct embeddings that are query-sensitive, in the sense that they yield a different distance measure for different queries, so as to improve nearest neighbor retrieval accuracy for each query. Second, we show how to optimize embeddings for nearest neighbor classification tasks, by tuning them to approximate a parameter space distance measure, instead of the original feature-based distance measure.
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
The Java programming language has been widely described as secure by design. Nevertheless, a number of serious security vulnerabilities have been discovered in Java, particularly in the component known as the Bytecode Verifier. This paper describes a method for representing Java security constraints using the Alloy modeling language. It further describes a system for performing a security analysis on any block of Java bytecodes by converting the bytes into relation initializers in Alloy. Any counterexamples found by the Alloy analyzer correspond directly to insecure code. Analysis of a real-world malicious applet is given to demonstrate the efficacy of the approach.