3 resultados para MOBILITY
em Boston University Digital Common
Resumo:
Commonly, research work in routing for delay tolerant networks (DTN) assumes that node encounters are predestined, in the sense that they are the result of unknown, exogenous processes that control the mobility of these nodes. In this paper, we argue that for many applications such an assumption is too restrictive: while the spatio-temporal coordinates of the start and end points of a node's journey are determined by exogenous processes, the specific path that a node may take in space-time, and hence the set of nodes it may encounter could be controlled in such a way so as to improve the performance of DTN routing. To that end, we consider a setting in which each mobile node is governed by a schedule consisting of a ist of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged for DTN message delivery purposes. We define the Mobility Coordination Problem (MCP) for DTNs as follows: Given a set of nodes, each with its own schedule, and a set of messages to be exchanged between these nodes, devise a set of node encounters that minimize message delivery delays while satisfying all node schedules. The MCP for DTNs is general enough that it allows us to model and evaluate some of the existing DTN schemes, including data mules and message ferries. In this paper, we show that MCP for DTNs is NP-hard and propose two detour-based approaches to solve the problem. The first (DMD) is a centralized heuristic that leverages knowledge of the message workload to suggest specific detours to optimize message delivery. The second (DNE) is a distributed heuristic that is oblivious to the message workload, and which selects detours so as to maximize node encounters. We evaluate the performance of these detour-based approaches using extensive simulations based on synthetic workloads as well as real schedules obtained from taxi logs in a major metropolitan area. Our evaluation shows that our centralized, workload-aware DMD approach yields the best performance, in terms of message delay and delivery success ratio, and that our distributed, workload-oblivious DNE approach yields favorable performance when compared to approaches that require the use of data mules and message ferries.
Resumo:
Controlling the mobility pattern of mobile nodes (e.g., robots) to monitor a given field is a well-studied problem in sensor networks. In this setup, absolute control over the nodes’ mobility is assumed. Apart from the physical ones, no other constraints are imposed on planning mobility of these nodes. In this paper, we address a more general version of the problem. Specifically, we consider a setting in which mobility of each node is externally constrained by a schedule consisting of a list of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged to achieve a specific coverage distribution of a field. Such a distribution defines the relative importance of different field locations. We define the Constrained Mobility Coordination problem for Preferential Coverage (CMC-PC) as follows: given a field with a desired monitoring distribution, and a number of nodes n, each with its own schedule, we need to coordinate the mobility of the nodes in order to achieve the following two goals: 1) satisfy the schedules of all nodes, and 2) attain the required coverage of the given field. We show that the CMC-PC problem is NP-complete (by reduction to the Hamiltonian Cycle problem). Then we propose TFM, a distributed heuristic to achieve field coverage that is as close as possible to the required coverage distribution. We verify the premise of TFM using extensive simulations, as well as taxi logs from a major metropolitan area. We compare TFM to the random mobility strategy—the latter provides a lower bound on performance. Our results show that TFM is very successful in matching the required field coverage distribution, and that it provides, at least, two-fold query success ratio for queries that follow the target coverage distribution of the field.
Resumo:
As the Internet has evolved and grown, an increasing number of nodes (hosts or autonomous systems) have become multihomed, i.e., a node is connected to more than one network. Mobility can be viewed as a special case of multihoming—as a node moves, it unsubscribes from one network and subscribes to another, which is akin to one interface becoming inactive and another active. The current Internet architecture has been facing significant challenges in effectively dealing with multihoming (and consequently mobility). The Recursive INternet Architecture (RINA) [1] was recently proposed as a clean-slate solution to the current problems of the Internet. In this paper, we perform an average-case cost analysis to compare the multihoming / mobility support of RINA, against that of other approaches such as LISP and MobileIP. We also validate our analysis using trace-driven simulation.