2 resultados para MANET
em Boston University Digital Common
Resumo:
We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how "content" should be routed. For example, content may be diverted through an intermediary DTN node for the purposes of preprocessing, authentication, etc. To support such capability, we implement Predicate Routing [7] where high-level constraints of DTN nodes are mapped into low-level routing predicates at the MANET level. Our testbed uses a Linux system architecture and leverages User Mode Linux [2] to emulate every node running a DTN Reference Implementation code [5]. In our initial prototype, we use the On Demand Distance Vector (AODV) MANET routing protocol. We use the network simulator ns-2 (ns-emulation version) to simulate the mobility and wireless connectivity of both DTN and MANET nodes. We show preliminary throughput results showing the efficient and correct operation of propagating routing predicates, and as a side effect, the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connection into shorter-length TCP connections.
Resumo:
We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how “content” should be routed. For example, content can be directed through an intermediary DTN node for the purposes of preprocessing, authentication, etc., or content from a malicious MANET node can be dropped. To support such content routing at the DTN level, we implement Predicate Routing [1] where high-level constraints of DTN nodes are mapped into low-level routing predicates within the MANET nodes. Our testbed [2] uses a Linux system architecture with User Mode Linux [3] to emulate every DTN node with a DTN Reference Implementation code [4]. In our initial architecture prototype, we use the On Demand Distance Vector (AODV) routing protocol at the MANET level. We use the network simulator ns-2 (ns-emulation version) to simulate the wireless connectivity of both DTN and MANET nodes. Preliminary results show the efficient and correct operation of propagating routing predicates. For the application of content re-routing through an intermediary, as a side effect, results demonstrate the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connections into shorter-length TCP connections.