2 resultados para M48 (Tank)
em Boston University Digital Common
Resumo:
In the ocean, natural and artificial processes generate clouds of bubbles which scatter and attenuate sound. Measurements have shown that at the individual bubble resonance frequency, sound propagation in this medium is highly attenuated and dispersive. Theory to explain this behavior exists in the literature, and is adequate away from resonance. However, due to excessive attenuation near resonance, little experimental data exists for comparison. An impedance tube was developed specifically for exploring this regime. Using the instrument, unique phase speed and attenuation measurements were made for void fractions ranging from 6.2 × 10^−5 to 2.7 × 10^−3 and bubble sizes centered around 0.62 mm in radius. Improved measurement speed, accuracy and precision is possible with the new instrument, and both instantaneous and time-averaged measurements were obtained. Behavior at resonance was observed to be sensitive to the bubble population statistics and agreed with existing theory, within the uncertainty of the bubble population parameters. Scattering from acoustically compact bubble clouds can be predicted from classical scattering theory by using an effective medium description of the bubbly fluid interior. Experimental verification was previously obtained up to the lowest resonance frequency. A novel bubble production technique has been employed to obtain unique scattering measurements with a bubbly-liquid-filled latex tube in a large indoor tank. The effective scattering model described these measurements up to three times the lowest resonance frequency of the structure.
Resumo:
It is well documented that the presence of even a few air bubbles in water can signifi- cantly alter the propagation and scattering of sound. Air bubbles are both naturally and artificially generated in all marine environments, especially near the sea surface. The abil- ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been a goal of the underwater acoustics community. One promising solution is a submersible, thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was successful at characterizing low void fraction bubbly liquids in the laboratory [1]. This work details the modifications made to the existing impedance tube design to allow for submersed deployment in a controlled environment, such as a large tank or a test pond. As well as being submersible, the useable frequency range of the device is increased from 5 - 9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new impedance tube is fitted with a large stainless steel flange to better define the boundary condition on the plane of the tube opening. The new device was validated against the classic theoretical result for the complex reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 % void fraction) outside the tube opening. Results from the bubbly liquid experiments were inconsistent with flanged tube theory using current bubbly liquid models. The results were more closely matched to unflanged tube theory, suggesting that the high attenuation and phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into free space.