4 resultados para Möser, Justus, 1720-1794.
em Boston University Digital Common
Resumo:
http://moa.umdl.umich.edu/cgi/sgml/moa-idx?notisid=AGA4516
Resumo:
http://www.archive.org/details/memoirofhuntingt00hookuoft
Resumo:
We present a thorough characterization of the access patterns in blogspace, which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and management requests spanning a 28-day period is done at three different levels. The user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed; the server view characterizes the aggregate access patterns of all users to all blogs. The more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed for traditional web content. We identify and characterize novel features of the blogosphere workload, and we show the similarities and differences between typical web server workloads and blogosphere server workloads. Finally, based on our main characterization results, we build a new synthetic blogosphere workload generator called GBLOT, which aims at mimicking closely a stream of requests originating from a population of blog users. Given the increasing share of blogspace traffic, realistic workload models and tools are important for capacity planning and traffic engineering purposes.
Resumo:
A novel approach for estimating articulated body posture and motion from monocular video sequences is proposed. Human pose is defined as the instantaneous two dimensional configuration (i.e., the projection onto the image plane) of a single articulated body in terms of the position of a predetermined set of joints. First, statistical segmentation of the human bodies from the background is performed and low-level visual features are found given the segmented body shape. The goal is to be able to map these, generally low level, visual features to body configurations. The system estimates different mappings, each one with a specific cluster in the visual feature space. Given a set of body motion sequences for training, unsupervised clustering is obtained via the Expectation Maximation algorithm. Then, for each of the clusters, a function is estimated to build the mapping between low-level features to 3D pose. Currently this mapping is modeled by a neural network. Given new visual features, a mapping from each cluster is performed to yield a set of possible poses. From this set, the system selects the most likely pose given the learned probability distribution and the visual feature similarity between hypothesis and input. Performance of the proposed approach is characterized using a new set of known body postures, showing promising results.