10 resultados para Logic of many
em Boston University Digital Common
Resumo:
This dissertation, an exercise in practical theology, consists of a critical conversation between the evangelistic practice of Campus Crusade for Christ in two American university contexts, Bryan Stone's ecclesiologically grounded theology of evangelism, and William Abraham's eschatologically grounded theology of evangelism. It seeks to provide these evangelizing communities several strategic proposals for a more ecclesiologically and eschatologically grounded practice of evangelism within a university context. The current literature on evangelism is long on evangelistic strategy and activity, but short on theological analysis and reflection. This study focuses on concrete practices, but is grounded in a thick description of two particular contexts (derived from qualitative research methods) and a theological analysis of the ecclesiological and eschatological beliefs embedded within their evangelistic activities. The dissertation provides an historical overview of important figures, ideas, and events that helped mold the practice of evangelism inherited by the two ministries of this study, beginning with the famous Haystack Revival on Williams College in 1806. Both ministries, Campus Crusade for Christ at Bowling Green State University (Ohio) and at Washington State University, inherited an evangelistic practice sorely infected with many of the classic distortions that both Abraham and Stone attempt to correct. Qualitative research methods detail the direction that Campus Crusade for Christ at Bowling Green State University (Ohio) and Washington State University have taken the practice of evangelism they inherited. Applying the analytical categories that emerge from a detailed summary of Stone and Abraham to qualitative data of these two ministries reveals several ways evangelism has morphed in a manner sympathetic to Stone's insistence that the central logic of evangelism is the embodied witness of the church. The results of this analysis reveal the subversive and pervasive influence of modernity on these evangelizing communities—an influence that warrants several corrective strategic proposals including: 1) re-situating evangelism within a reading of the biblical narrative that emphasizes the present, social, public, and realized nature of the gospel of the kingdom of God rather than simply its future, personal, private, and unrealized dimensions; 2) clarifying the nature of the evangelizing communities and their relationship to the church; and 3) emphasizing the virtues that characterize a new evangelistic exemplar who is incarnational, intentional, humble, and courageous.
Resumo:
This dissertation narrates the historical development of American evangelical missions to the poor from 1947-2005 and analyzes the discourse of its main parachurch proponents, especially World Vision, Compassion International, Food for the Hungry, Samaritan's urse, Sojourners, Evangelicals for Social Action, and the Christian Community Development Association. Although recent scholarship on evangelicalism has been prolific, much of the historical work has focused on earlier periods. Sociological and political scientific scholarship on the postwar period has been attracted mostly to controversies surrounding the Religious Right, leaving evangelicalism's resurgent concern for the poor relatively understudied. This dissertation addresses these lacunae. The study consists of three chronological parts, each marked by a distinctive model of mission to the poor. First, the 1950s were characterized by compassionate charity for individual emergencies, a model that cohered neatly with evangelicalism's individualism and emotionalism. This model should be regarded as the quintessential, bedrock evangelical theory of mission to the poor. It remained strong throughout the entire postwar period. Second, in the 1970s, a strong countercurrent emerged that advocated for penitent protest against structural injustice and underdevelopment. In contrast to the first model, it was distinguished by going against the grain of many aspects of evangelical culture, especially its reflexive patriotism and individualism. Third, in the 1990s, an important movement towards developing potential through hopeful holism gained prominence. Its advocates were confident that their integration of biblical principles with insights from contemporary economic development praxis would contribute to drastic, widespread reductions in poverty. This model signaled a new optimism in evangelicalism's engagement with the broader world. The increasing prominence of missions to the poor within American evangelicalism led to dramatic changes within the movement's worldview: by 2005, evangelicals were mostly unified in their expressed concern for the physical and social needs of the poor, a position that radically reversed their immediate postwar worldview of near-exclusive focus on the spiritual needs of individuals. Nevertheless, missions to the poor also paralleled, reinforced, and hastened the increasing fragmentation of evangelicalism's identity, as each missional model advocated for highly variant approaches to poverty amelioration that were undergirded by diverse sociological, political, and theological assumptions.
Resumo:
To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.
Resumo:
In college courses dealing with material that requires mathematical rigor, the adoption of a machine-readable representation for formal arguments can be advantageous. Students can focus on a specific collection of constructs that are represented consistently. Examples and counterexamples can be evaluated. Assignments can be assembled and checked with the help of an automated formal reasoning system. However, usability and accessibility do not have a high priority and are not addressed sufficiently well in the design of many existing machine-readable representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. We report on our attempt to evaluate our proposed design criteria by deploying within the classroom a lightweight formal verification system designed according to these criteria. The lightweight formal verification system was used within the instruction of a common application of formal reasoning: proving by induction formal propositions about functional code. We present all of the formal reasoning examples and assignments considered during this deployment, most of which are drawn directly from an introductory text on functional programming. We demonstrate how the design of the system improves the effectiveness and understandability of the examples, and how it aids in the instruction of basic formal reasoning techniques. We make brief remarks about the practical and administrative implications of the system’s design from the perspectives of the student, the instructor, and the grader.
Resumo:
Research on the construction of logical overlay networks has gained significance in recent times. This is partly due to work on peer-to-peer (P2P) systems for locating and retrieving distributed data objects, and also scalable content distribution using end-system multicast techniques. However, there are emerging applications that require the real-time transport of data from various sources to potentially many thousands of subscribers, each having their own quality-of-service (QoS) constraints. This paper primarily focuses on the properties of two popular topologies found in interconnection networks, namely k-ary n-cubes and de Bruijn graphs. The regular structure of these graph topologies makes them easier to analyze and determine possible routes for real-time data than complete or irregular graphs. We show how these overlay topologies compare in their ability to deliver data according to the QoS constraints of many subscribers, each receiving data from specific publishing hosts. Comparisons are drawn on the ability of each topology to route data in the presence of dynamic system effects, due to end-hosts joining and departing the system. Finally, experimental results show the service guarantees and physical link stress resulting from efficient multicast trees constructed over both kinds of overlay networks.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understand paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.
Resumo:
A computational model of visual processing in the vertebrate retina provides a unified explanation of a range of data previously treated by disparate models. Three results are reported here: the model proposes a functional explanation for the primary feed-forward retinal circuit found in vertebrate retinae, it shows how this retinal circuit combines nonlinear adaptation with the desirable properties of linear processing, and it accounts for the origin of parallel transient (nonlinear) and sustained (linear) visual processing streams as simple variants of the same retinal circuit. The retina, owing to its accessibility and to its fundamental role in the initial transduction of light into neural signals, is among the most extensively studied neural structures in the nervous system. Since the pioneering anatomical work by Ramón y Cajal at the turn of the last century[1], technological advances have abetted detailed descriptions of the physiological, pharmacological, and functional properties of many types of retinal cells. However, the relationship between structure and function in the retina is still poorly understood. This article outlines a computational model developed to address fundamental constraints of biological visual systems. Neurons that process nonnegative input signals-such as retinal illuminance-are subject to an inescapable tradeoff between accurate processing in the spatial and temporal domains. Accurate processing in both domains can be achieved with a model that combines nonlinear mechanisms for temporal and spatial adaptation within three layers of feed-forward processing. The resulting architecture is structurally similar to the feed-forward retinal circuit connecting photoreceptors to retinal ganglion cells through bipolar cells. This similarity suggests that the three-layer structure observed in all vertebrate retinae[2] is a required minimal anatomy for accurate spatiotemporal visual processing. This hypothesis is supported through computer simulations showing that the model's output layer accounts for many properties of retinal ganglion cells[3],[4],[5],[6]. Moreover, the model shows how the retina can extend its dynamic range through nonlinear adaptation while exhibiting seemingly linear behavior in response to a variety of spatiotemporal input stimuli. This property is the basis for the prediction that the same retinal circuit can account for both sustained (X) and transient (Y) cat ganglion cells[7] by simple morphological changes. The ability to generate distinct functional behaviors by simple changes in cell morphology suggests that different functional pathways originating in the retina may have evolved from a unified anatomy designed to cope with the constraints of low-level biological vision.