2 resultados para Load power

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A well-known paradigm for load balancing in distributed systems is the``power of two choices,''whereby an item is stored at the less loaded of two (or more) random alternative servers. We investigate the power of two choices in natural settings for distributed computing where items and servers reside in a geometric space and each item is associated with the server that is its nearest neighbor. This is in fact the backdrop for distributed hash tables such as Chord, where the geometric space is determined by clockwise distance on a one-dimensional ring. Theoretically, we consider the following load balancing problem. Suppose that servers are initially hashed uniformly at random to points in the space. Sequentially, each item then considers d candidate insertion points also chosen uniformly at random from the space,and selects the insertion point whose associated server has the least load. For the one-dimensional ring, and for Euclidean distance on the two-dimensional torus, we demonstrate that when n data items are hashed to n servers,the maximum load at any server is log log n / log d + O(1) with high probability. While our results match the well-known bounds in the standard setting in which each server is selected equiprobably, our applications do not have this feature, since the sizes of the nearest-neighbor regions around servers are non-uniform. Therefore, the novelty in our methods lies in developing appropriate tail bounds on the distribution of nearest-neighbor region sizes and in adapting previous arguments to this more general setting. In addition, we provide simulation results demonstrating the load balance that results as the system size scales into the millions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed hash tables have recently become a useful building block for a variety of distributed applications. However, current schemes based upon consistent hashing require both considerable implementation complexity and substantial storage overhead to achieve desired load balancing goals. We argue in this paper that these goals can b e achieved more simply and more cost-effectively. First, we suggest the direct application of the "power of two choices" paradigm, whereby an item is stored at the less loaded of two (or more) random alternatives. We then consider how associating a small constant number of hash values with a key can naturally b e extended to support other load balancing methods, including load-stealing or load-shedding schemes, as well as providing natural fault-tolerance mechanisms.