4 resultados para Literatures of Germanic languages
em Boston University Digital Common
Resumo:
We survey several of the research efforts pursued by the iBench and snBench projects in the CS Department at Boston University over the last half dozen years. These activities use ideas and methodologies inspired by recent developments in other parts of computer science -- particularly in formal methods and in the foundations of programming languages -- but now specifically applied to the certification of safety-critical networking systems. This is research jointly led by Azer Bestavros and Assaf Kfoury with the participation of Adam Bradley, Andrei Lapets, and Michael Ocean.
Resumo:
This report presents an algorithm, and its implementation, for doing type inference in the context of Quasi-Static Typing (QST) ["Quasy-static Typing." Satish Thatte Proc. ACM Symp. on Principles of Programming Languages, 1988]. The package infers types a la "QST" for the simply typed λ-calculus.
Resumo:
Estimation of 3D hand pose is useful in many gesture recognition applications, ranging from human-computer interaction to automated recognition of sign languages. In this paper, 3D hand pose estimation is treated as a database indexing problem. Given an input image of a hand, the most similar images in a large database of hand images are retrieved. The hand pose parameters of the retrieved images are used as estimates for the hand pose in the input image. Lipschitz embeddings of edge images into a Euclidean space are used to improve the efficiency of database retrieval. In order to achieve interactive retrieval times, similarity queries are initially performed in this Euclidean space. The paper describes ongoing work that focuses on how to best choose reference images, in order to improve retrieval accuracy.
Resumo:
We present a type system, StaXML, which employs the stacked type syntax to represent essential aspects of the potential roles of XML fragments to the structure of complete XML documents. The simplest application of this system is to enforce well-formedness upon the construction of XML documents without requiring the use of templates or balanced "gap plugging" operators; this allows it to be applied to programs written according to common imperative web scripting idioms, particularly the echoing of unbalanced XML fragments to an output buffer. The system can be extended to verify particular XML applications such as XHTML and identifying individual XML tags constructed from their lexical components. We also present StaXML for PHP, a prototype precompiler for the PHP4 scripting language which infers StaXML types for expressions without assistance from the programmer.