4 resultados para Line geometry.
em Boston University Digital Common
Resumo:
BACKGROUND:Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms.METHODS:We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates [greater than or equal to]80%, HWE p [greater than or equal to] 0.001, and MAF [greater than or equal to]10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers.RESULTS:Heritability estimates for all bone phenotypes were 30-66%. LOD scores [greater than or equal to]3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 x 10-6 and 2.5 x 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.
Resumo:
The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.
Resumo:
Illusory contours can be induced along directions approximately collinear to edges or approximately perpendicular to the ends of lines. Using a rating scale procedure we explored the relation between the two types of inducers by systematically varying the thickness of inducing elements to result; in varying amounts of "edge-like" or "line-like" induction. Inducers for om illusory figures consisted of concentric rings with arcs missing. Observers judged the clarity and brightness of illusory figures as the number of arcs, their thicknesses, and spacings were parametrically varied. Degree of clarity and amount of induced brightness were both found to be inverted-U functions of the number of arcs. These results mandate that any valid model of illusory contour formation must account for interference effects between parallel lines or between those neural units responsible for completion of boundary signals in directions perpendicular to the ends of thin lines. Line width was found to have an effect on both clarity and brightness, a finding inconsistent with those models which employ only completion perpendicular to inducer orientation.
Resumo:
Illusory contours can be induced along direction approximately collinear to edges or approximately perpendicular to the ends of lines. Using a rating scale procedure we explored the relation between the two types of inducers by systematically varying the thickness of inducing elements to result in varying amounts of "edge-like" or "line-like" induction. Inducers for our illusory figures consisted of concentric rings with arcs missing. Observers judged the clarity and brightness of illusory figures as the number of arcs, their thicknesses, and spacings were parametrically varied. Degree of clarity and amount of induced brightness were both found to be inverted-U functions of the number of arcs. These results mandate that any valid model of illusory contour formation must account for interference effects between parallel lines or between those neural units responsible for completion of boundary signals in directions perpendicular to the ends of thin lines. Line width was found to have an efFect on both clarity and brightness, a finding inconsistent with those models which employ only completion perpendicular to inducer orientation.