1 resultado para Lifetimes
em Boston University Digital Common
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Archive of European Integration (1)
- Aston University Research Archive (7)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (16)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (35)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (152)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (44)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (12)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (80)
- Queensland University of Technology - ePrints Archive (8)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (55)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (2)
- Universidade do Algarve (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (7)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (4)
- University of Washington (5)
Resumo:
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably.