5 resultados para Library moving.

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper presented at the Digital Humanities 2009 conference in College Park, Maryland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A report of key findings of the Cloud Library project, an effort jointly designed and executed by OCLC Research, the HathiTrust, New York University's Elmer Bobst Library, and the Research Collections Access & Preservation (ReCAP) consortium, with support from the The Andrew W. Mellon Foundation. The objective of the project was to examine the feasibility of outsourcing management of low-use print books held in academic libraries to shared service providers, including large-scale print and digital repositories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a draft 2 of a discussion paper written for Boston University Libraries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A working paper for discussion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.