1 resultado para LiDAR, sequenze pseudocasuali, Linear-feedback schist register, cross correlation
em Boston University Digital Common
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (35)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (27)
- CentAUR: Central Archive University of Reading - UK (49)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (40)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (14)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Greenwich Academic Literature Archive - UK (6)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (66)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (2)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (8)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (44)
- Queensland University of Technology - ePrints Archive (218)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (89)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (11)
- University of Michigan (5)
- University of Queensland eSpace - Australia (8)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.