1 resultado para Least-energy Solutions
em Boston University Digital Common
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (17)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (33)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (14)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (8)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (52)
- Institutional Repository of Leibniz University Hannover (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (10)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (33)
- Queensland University of Technology - ePrints Archive (410)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (37)
- Universidade Complutense de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (11)
- University of Queensland eSpace - Australia (9)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
A learning based framework is proposed for estimating human body pose from a single image. Given a differentiable function that maps from pose space to image feature space, the goal is to invert the process: estimate the pose given only image features. The inversion is an ill-posed problem as the inverse mapping is a one to many process. Hence multiple solutions exist, and it is desirable to restrict the solution space to a smaller subset of feasible solutions. For example, not all human body poses are feasible due to anthropometric constraints. Since the space of feasible solutions may not admit a closed form description, the proposed framework seeks to exploit machine learning techniques to learn an approximation that is smoothly parameterized over such a space. One such technique is Gaussian Process Latent Variable Modelling. Scaled conjugate gradient is then used find the best matching pose in the space of feasible solutions when given an input image. The formulation allows easy incorporation of various constraints, e.g. temporal consistency and anthropometric constraints. The performance of the proposed approach is evaluated in the task of upper-body pose estimation from silhouettes and compared with the Specialized Mapping Architecture. The estimation accuracy of the Specialized Mapping Architecture is at least one standard deviation worse than the proposed approach in the experiments with synthetic data. In experiments with real video of humans performing gestures, the proposed approach produces qualitatively better estimation results.