4 resultados para Layered coding
em Boston University Digital Common
Resumo:
Partial occlusions are commonplace in a variety of real world computer vision applications: surveillance, intelligent environments, assistive robotics, autonomous navigation, etc. While occlusion handling methods have been proposed, most methods tend to break down when confronted with numerous occluders in a scene. In this paper, a layered image-plane representation for tracking people through substantial occlusions is proposed. An image-plane representation of motion around an object is associated with a pre-computed graphical model, which can be instantiated efficiently during online tracking. A global state and observation space is obtained by linking transitions between layers. A Reversible Jump Markov Chain Monte Carlo approach is used to infer the number of people and track them online. The method outperforms two state-of-the-art methods for tracking over extended occlusions, given videos of a parking lot with numerous vehicles and a laboratory with many desks and workstations.
Resumo:
Traditional approaches to receiver-driven layered multicast have advocated the benefits of cumulative layering, which can enable coarse-grained congestion control that complies with TCP-friendliness equations over large time scales. In this paper, we quantify the costs and benefits of using non-cumulative layering and present a new, scalable multicast congestion control scheme which provides a fine-grained approximation to the behavior of TCP additive increase/multiplicative decrease (AIMD). In contrast to the conventional wisdom, we demonstrate that fine-grained rate adjustment can be achieved with only modest increases in the number of layers and aggregate bandwidth consumption, while using only a small constant number of control messages to perform either additive increase or multiplicative decrease.
Resumo:
Recognition of objects in complex visual scenes is greatly simplified by the ability to segment features belonging to different objects while grouping features belonging to the same object. This feature-binding process can be driven by the local relations between visual contours. The standard method for implementing this process with neural networks uses a temporal code to bind features together. I propose a spatial coding alternative for the dynamic binding of visual contours, and demonstrate the spatial coding method for segmenting an image consisting of three overlapping objects.
Resumo:
A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.